Properties

Label 16.0.170...664.9
Degree $16$
Signature $[0, 8]$
Discriminant $1.708\times 10^{37}$
Root discriminant \(212.34\)
Ramified primes $2,7,17$
Class number $11202336$ (GRH)
Class group [2, 2, 2, 6, 233382] (GRH)
Galois group $C_8\times C_2$ (as 16T5)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 476*x^14 + 68306*x^12 + 4338264*x^10 + 133226688*x^8 + 1942889200*x^6 + 13328219912*x^4 + 38080628320*x^2 + 26656439824)
 
gp: K = bnfinit(y^16 + 476*y^14 + 68306*y^12 + 4338264*y^10 + 133226688*y^8 + 1942889200*y^6 + 13328219912*y^4 + 38080628320*y^2 + 26656439824, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 + 476*x^14 + 68306*x^12 + 4338264*x^10 + 133226688*x^8 + 1942889200*x^6 + 13328219912*x^4 + 38080628320*x^2 + 26656439824);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 + 476*x^14 + 68306*x^12 + 4338264*x^10 + 133226688*x^8 + 1942889200*x^6 + 13328219912*x^4 + 38080628320*x^2 + 26656439824)
 

\( x^{16} + 476 x^{14} + 68306 x^{12} + 4338264 x^{10} + 133226688 x^{8} + 1942889200 x^{6} + \cdots + 26656439824 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(17076113336960240702301670118118129664\) \(\medspace = 2^{44}\cdot 7^{8}\cdot 17^{14}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(212.34\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{11/4}7^{1/2}17^{7/8}\approx 212.3363336696819$
Ramified primes:   \(2\), \(7\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $16$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1904=2^{4}\cdot 7\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{1904}(897,·)$, $\chi_{1904}(1413,·)$, $\chi_{1904}(1,·)$, $\chi_{1904}(909,·)$, $\chi_{1904}(461,·)$, $\chi_{1904}(1749,·)$, $\chi_{1904}(953,·)$, $\chi_{1904}(1177,·)$, $\chi_{1904}(349,·)$, $\chi_{1904}(1861,·)$, $\chi_{1904}(225,·)$, $\chi_{1904}(1121,·)$, $\chi_{1904}(169,·)$, $\chi_{1904}(797,·)$, $\chi_{1904}(1849,·)$, $\chi_{1904}(1301,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{128}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{7}a^{2}$, $\frac{1}{7}a^{3}$, $\frac{1}{98}a^{4}$, $\frac{1}{98}a^{5}$, $\frac{1}{686}a^{6}$, $\frac{1}{686}a^{7}$, $\frac{1}{163268}a^{8}$, $\frac{1}{163268}a^{9}$, $\frac{1}{1142876}a^{10}$, $\frac{1}{1142876}a^{11}$, $\frac{1}{1664027456}a^{12}-\frac{1}{3714347}a^{10}-\frac{1}{1061242}a^{8}+\frac{5}{35672}a^{6}-\frac{3}{637}a^{4}-\frac{1}{91}a^{2}-\frac{23}{104}$, $\frac{1}{1664027456}a^{13}-\frac{1}{3714347}a^{11}-\frac{1}{1061242}a^{9}+\frac{5}{35672}a^{7}-\frac{3}{637}a^{5}-\frac{1}{91}a^{3}-\frac{23}{104}a$, $\frac{1}{1036689105088}a^{14}-\frac{29}{148098443584}a^{12}+\frac{313}{1322307532}a^{10}-\frac{757}{377802152}a^{8}+\frac{47}{3174808}a^{6}+\frac{37}{56693}a^{4}-\frac{823}{64792}a^{2}-\frac{285}{9256}$, $\frac{1}{1036689105088}a^{15}-\frac{29}{148098443584}a^{13}+\frac{313}{1322307532}a^{11}-\frac{757}{377802152}a^{9}+\frac{47}{3174808}a^{7}+\frac{37}{56693}a^{5}-\frac{823}{64792}a^{3}-\frac{285}{9256}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{6}\times C_{233382}$, which has order $11202336$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{29}{19936328944}a^{14}+\frac{137}{203431928}a^{12}+\frac{2313}{25428991}a^{10}+\frac{38389}{7265426}a^{8}+\frac{8661}{61054}a^{6}+\frac{1020}{623}a^{4}+\frac{8885}{1246}a^{2}+\frac{718}{89}$, $\frac{101}{74049221792}a^{14}+\frac{48561}{74049221792}a^{12}+\frac{9007}{94450538}a^{10}+\frac{4743}{793702}a^{8}+\frac{38211}{226772}a^{6}+\frac{15217}{8099}a^{4}+\frac{33645}{4628}a^{2}+\frac{24209}{4628}$, $\frac{2097}{1036689105088}a^{14}+\frac{140683}{148098443584}a^{12}+\frac{174337}{1322307532}a^{10}+\frac{24845}{3174808}a^{8}+\frac{661751}{3174808}a^{6}+\frac{124492}{56693}a^{4}+\frac{75887}{9256}a^{2}+\frac{53123}{9256}$, $\frac{683}{1036689105088}a^{14}+\frac{127}{431773888}a^{12}+\frac{48239}{1322307532}a^{10}+\frac{839}{453544}a^{8}+\frac{126797}{3174808}a^{6}+\frac{17973}{56693}a^{4}+\frac{8597}{9256}a^{2}+\frac{4705}{9256}$, $\frac{141}{18512305448}a^{14}+\frac{527249}{148098443584}a^{12}+\frac{323741}{661153766}a^{10}+\frac{2722235}{94450538}a^{8}+\frac{2430661}{3174808}a^{6}+\frac{463566}{56693}a^{4}+\frac{252584}{8099}a^{2}+\frac{219657}{9256}$, $\frac{951}{1036689105088}a^{14}+\frac{1851}{4355836576}a^{12}+\frac{1454}{25428991}a^{10}+\frac{1218157}{377802152}a^{8}+\frac{123675}{1587404}a^{6}+\frac{35543}{56693}a^{4}+\frac{38975}{64792}a^{2}-\frac{24045}{4628}$, $\frac{4395}{1036689105088}a^{14}+\frac{293515}{148098443584}a^{12}+\frac{360501}{1322307532}a^{10}+\frac{6059281}{377802152}a^{8}+\frac{1348791}{3174808}a^{6}+\frac{254552}{56693}a^{4}+\frac{1077131}{64792}a^{2}+\frac{9695}{712}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 103646.40189541418 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 103646.40189541418 \cdot 11202336}{2\cdot\sqrt{17076113336960240702301670118118129664}}\cr\approx \mathstrut & 0.341253615728791 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 + 476*x^14 + 68306*x^12 + 4338264*x^10 + 133226688*x^8 + 1942889200*x^6 + 13328219912*x^4 + 38080628320*x^2 + 26656439824)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 + 476*x^14 + 68306*x^12 + 4338264*x^10 + 133226688*x^8 + 1942889200*x^6 + 13328219912*x^4 + 38080628320*x^2 + 26656439824, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 + 476*x^14 + 68306*x^12 + 4338264*x^10 + 133226688*x^8 + 1942889200*x^6 + 13328219912*x^4 + 38080628320*x^2 + 26656439824);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 + 476*x^14 + 68306*x^12 + 4338264*x^10 + 133226688*x^8 + 1942889200*x^6 + 13328219912*x^4 + 38080628320*x^2 + 26656439824);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_8$ (as 16T5):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_8\times C_2$
Character table for $C_8\times C_2$

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{34}) \), \(\Q(\sqrt{2}, \sqrt{17})\), 4.4.314432.1, 4.4.4913.1, 8.8.98867482624.1, 8.0.4132325415182139392.2, 8.0.4132325415182139392.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.8.0.1}{8} }^{2}$ ${\href{/padicField/5.8.0.1}{8} }^{2}$ R ${\href{/padicField/11.8.0.1}{8} }^{2}$ ${\href{/padicField/13.4.0.1}{4} }^{4}$ R ${\href{/padicField/19.2.0.1}{2} }^{8}$ ${\href{/padicField/23.8.0.1}{8} }^{2}$ ${\href{/padicField/29.8.0.1}{8} }^{2}$ ${\href{/padicField/31.8.0.1}{8} }^{2}$ ${\href{/padicField/37.8.0.1}{8} }^{2}$ ${\href{/padicField/41.8.0.1}{8} }^{2}$ ${\href{/padicField/43.2.0.1}{2} }^{8}$ ${\href{/padicField/47.1.0.1}{1} }^{16}$ ${\href{/padicField/53.2.0.1}{2} }^{8}$ ${\href{/padicField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.8.22.5$x^{8} + 20 x^{7} + 154 x^{6} + 592 x^{5} + 1315 x^{4} + 1968 x^{3} + 2050 x^{2} + 828 x + 111$$4$$2$$22$$C_4\times C_2$$[3, 4]^{2}$
2.8.22.5$x^{8} + 20 x^{7} + 154 x^{6} + 592 x^{5} + 1315 x^{4} + 1968 x^{3} + 2050 x^{2} + 828 x + 111$$4$$2$$22$$C_4\times C_2$$[3, 4]^{2}$
\(7\) Copy content Toggle raw display 7.8.4.2$x^{8} + 245 x^{4} - 1372 x^{2} + 7203$$2$$4$$4$$C_8$$[\ ]_{2}^{4}$
7.8.4.2$x^{8} + 245 x^{4} - 1372 x^{2} + 7203$$2$$4$$4$$C_8$$[\ ]_{2}^{4}$
\(17\) Copy content Toggle raw display 17.8.7.1$x^{8} + 68$$8$$1$$7$$C_8$$[\ ]_{8}$
17.8.7.1$x^{8} + 68$$8$$1$$7$$C_8$$[\ ]_{8}$