Properties

Label 12.4.366...536.17
Degree $12$
Signature $[4, 4]$
Discriminant $3.663\times 10^{21}$
Root discriminant \(62.66\)
Ramified primes $2,31$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^3:A_4$ (as 12T58)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 + 30*x^10 + 135*x^8 + 56*x^6 - 512*x^4 - 576*x^2 + 64)
 
gp: K = bnfinit(y^12 + 30*y^10 + 135*y^8 + 56*y^6 - 512*y^4 - 576*y^2 + 64, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 + 30*x^10 + 135*x^8 + 56*x^6 - 512*x^4 - 576*x^2 + 64);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 + 30*x^10 + 135*x^8 + 56*x^6 - 512*x^4 - 576*x^2 + 64)
 

\( x^{12} + 30x^{10} + 135x^{8} + 56x^{6} - 512x^{4} - 576x^{2} + 64 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[4, 4]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(3663139112860606529536\) \(\medspace = 2^{32}\cdot 31^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(62.66\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{27/8}31^{2/3}\approx 102.38052790852275$
Ramified primes:   \(2\), \(31\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{7}-\frac{1}{2}a^{5}-\frac{1}{4}a^{3}$, $\frac{1}{16}a^{8}-\frac{1}{8}a^{6}-\frac{1}{16}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{16}a^{9}-\frac{1}{8}a^{7}-\frac{1}{16}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{14368}a^{10}+\frac{213}{7184}a^{8}+\frac{7}{14368}a^{6}-\frac{1089}{3592}a^{4}-\frac{615}{1796}a^{2}+\frac{161}{449}$, $\frac{1}{28736}a^{11}+\frac{213}{14368}a^{9}+\frac{7}{28736}a^{7}-\frac{1089}{7184}a^{5}-\frac{615}{3592}a^{3}+\frac{161}{898}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{5}{1796}a^{10}+\frac{219}{3592}a^{8}-\frac{207}{898}a^{6}-\frac{3599}{3592}a^{4}+\frac{721}{898}a^{2}+\frac{154}{449}$, $\frac{463}{7184}a^{10}+\frac{3287}{1796}a^{8}+\frac{40957}{7184}a^{6}-\frac{25553}{3592}a^{4}-\frac{18039}{898}a^{2}+\frac{916}{449}$, $\frac{439}{3592}a^{10}+\frac{12353}{3592}a^{8}+\frac{36299}{3592}a^{6}-\frac{42199}{3592}a^{4}-\frac{18096}{449}a^{2}+\frac{1642}{449}$, $\frac{61}{1796}a^{10}+\frac{435}{449}a^{8}+\frac{5815}{1796}a^{6}-\frac{403}{898}a^{4}-\frac{3190}{449}a^{2}-\frac{905}{449}$, $\frac{21}{449}a^{10}+\frac{2109}{1796}a^{8}+\frac{147}{449}a^{6}-\frac{8949}{1796}a^{4}+\frac{349}{898}a^{2}-\frac{17}{449}$, $\frac{10956205}{14368}a^{11}+\frac{437369}{1796}a^{10}+\frac{164901987}{7184}a^{9}+\frac{26331423}{3592}a^{8}+\frac{1512735523}{14368}a^{7}+\frac{15097139}{449}a^{6}+\frac{95982649}{1796}a^{5}+\frac{61309453}{3592}a^{4}-\frac{691412709}{1796}a^{3}-\frac{55202213}{449}a^{2}-\frac{214844732}{449}a-\frac{68613778}{449}$, $\frac{67121797}{7184}a^{11}+\frac{92167585}{7184}a^{10}+\frac{535054519}{1796}a^{9}+\frac{183676684}{449}a^{8}+\frac{13097031087}{7184}a^{7}+\frac{17984340795}{7184}a^{6}+\frac{14227469033}{3592}a^{5}+\frac{19537184427}{3592}a^{4}+\frac{2411370681}{898}a^{3}+\frac{3311632745}{898}a^{2}-\frac{142547893}{449}a-\frac{195561170}{449}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 8325812.53378 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{4}\cdot 8325812.53378 \cdot 1}{2\cdot\sqrt{3663139112860606529536}}\cr\approx \mathstrut & 1.71517873036 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 + 30*x^10 + 135*x^8 + 56*x^6 - 512*x^4 - 576*x^2 + 64)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 + 30*x^10 + 135*x^8 + 56*x^6 - 512*x^4 - 576*x^2 + 64, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 + 30*x^10 + 135*x^8 + 56*x^6 - 512*x^4 - 576*x^2 + 64);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 + 30*x^10 + 135*x^8 + 56*x^6 - 512*x^4 - 576*x^2 + 64);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^3:A_4$ (as 12T58):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 96
The 10 conjugacy class representatives for $C_2^3:A_4$
Character table for $C_2^3:A_4$

Intermediate fields

\(\Q(\sqrt{2}) \), 3.3.961.1, 6.6.472842752.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 8 siblings: data not computed
Degree 12 siblings: data not computed
Degree 16 sibling: data not computed
Degree 24 siblings: data not computed
Degree 32 sibling: data not computed
Minimal sibling: 8.4.61976445190144.16

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.6.0.1}{6} }^{2}$ ${\href{/padicField/5.6.0.1}{6} }^{2}$ ${\href{/padicField/7.3.0.1}{3} }^{4}$ ${\href{/padicField/11.6.0.1}{6} }^{2}$ ${\href{/padicField/13.6.0.1}{6} }^{2}$ ${\href{/padicField/17.3.0.1}{3} }^{4}$ ${\href{/padicField/19.6.0.1}{6} }^{2}$ ${\href{/padicField/23.2.0.1}{2} }^{4}{,}\,{\href{/padicField/23.1.0.1}{1} }^{4}$ ${\href{/padicField/29.2.0.1}{2} }^{6}$ R ${\href{/padicField/37.6.0.1}{6} }^{2}$ ${\href{/padicField/41.3.0.1}{3} }^{4}$ ${\href{/padicField/43.6.0.1}{6} }^{2}$ ${\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{8}$ ${\href{/padicField/53.6.0.1}{6} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.4.11.15$x^{4} + 12 x^{2} + 8 x + 2$$4$$1$$11$$D_{4}$$[2, 3, 4]$
2.4.11.4$x^{4} + 8 x^{3} + 4 x^{2} + 18$$4$$1$$11$$C_4$$[3, 4]$
2.4.10.3$x^{4} + 4 x^{3} + 8 x^{2} + 2$$4$$1$$10$$D_{4}$$[2, 3, 7/2]$
\(31\) Copy content Toggle raw display 31.3.2.1$x^{3} + 31$$3$$1$$2$$C_3$$[\ ]_{3}$
31.3.2.1$x^{3} + 31$$3$$1$$2$$C_3$$[\ ]_{3}$
31.3.2.1$x^{3} + 31$$3$$1$$2$$C_3$$[\ ]_{3}$
31.3.2.1$x^{3} + 31$$3$$1$$2$$C_3$$[\ ]_{3}$