Properties

Label 12.0.519...504.1
Degree $12$
Signature $[0, 6]$
Discriminant $5.192\times 10^{28}$
Root discriminant \(247.14\)
Ramified primes $2,37,59$
Class number $5844636$ (GRH)
Class group [3, 18, 108234] (GRH)
Galois group $C_6\times S_3$ (as 12T18)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^11 + 41*x^10 - 6*x^9 + 1878*x^8 - 4406*x^7 + 63987*x^6 - 136784*x^5 + 1352954*x^4 - 3084580*x^3 + 19917769*x^2 - 31791008*x + 115888143)
 
gp: K = bnfinit(y^12 - 2*y^11 + 41*y^10 - 6*y^9 + 1878*y^8 - 4406*y^7 + 63987*y^6 - 136784*y^5 + 1352954*y^4 - 3084580*y^3 + 19917769*y^2 - 31791008*y + 115888143, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 2*x^11 + 41*x^10 - 6*x^9 + 1878*x^8 - 4406*x^7 + 63987*x^6 - 136784*x^5 + 1352954*x^4 - 3084580*x^3 + 19917769*x^2 - 31791008*x + 115888143);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 2*x^11 + 41*x^10 - 6*x^9 + 1878*x^8 - 4406*x^7 + 63987*x^6 - 136784*x^5 + 1352954*x^4 - 3084580*x^3 + 19917769*x^2 - 31791008*x + 115888143)
 

\( x^{12} - 2 x^{11} + 41 x^{10} - 6 x^{9} + 1878 x^{8} - 4406 x^{7} + 63987 x^{6} - 136784 x^{5} + \cdots + 115888143 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(51924135650907635776859701504\) \(\medspace = 2^{8}\cdot 37^{10}\cdot 59^{6}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(247.14\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2/3}37^{5/6}59^{1/2}\approx 247.14250235137513$
Ramified primes:   \(2\), \(37\), \(59\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $6$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{32}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{6}a^{9}-\frac{1}{6}a^{8}-\frac{1}{6}a^{7}+\frac{1}{3}a^{4}-\frac{1}{6}a^{3}-\frac{1}{6}a^{2}+\frac{1}{6}a$, $\frac{1}{18}a^{10}+\frac{1}{18}a^{9}+\frac{1}{6}a^{8}-\frac{1}{9}a^{7}+\frac{1}{6}a^{6}+\frac{5}{18}a^{5}-\frac{1}{6}a^{4}-\frac{1}{18}a^{2}+\frac{5}{18}a-\frac{1}{6}$, $\frac{1}{10\!\cdots\!46}a^{11}+\frac{36\!\cdots\!35}{15\!\cdots\!78}a^{10}-\frac{71\!\cdots\!19}{10\!\cdots\!46}a^{9}+\frac{12\!\cdots\!01}{53\!\cdots\!73}a^{8}+\frac{50\!\cdots\!47}{21\!\cdots\!54}a^{7}-\frac{12\!\cdots\!91}{10\!\cdots\!46}a^{6}+\frac{15\!\cdots\!11}{10\!\cdots\!46}a^{5}-\frac{10\!\cdots\!67}{17\!\cdots\!91}a^{4}+\frac{41\!\cdots\!71}{10\!\cdots\!46}a^{3}+\frac{27\!\cdots\!65}{10\!\cdots\!46}a^{2}-\frac{24\!\cdots\!01}{10\!\cdots\!46}a-\frac{97\!\cdots\!60}{25\!\cdots\!13}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$, $3$

Class group and class number

$C_{3}\times C_{18}\times C_{108234}$, which has order $5844636$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{13\!\cdots\!46}{53\!\cdots\!73}a^{11}+\frac{39\!\cdots\!79}{76\!\cdots\!39}a^{10}+\frac{31\!\cdots\!17}{53\!\cdots\!73}a^{9}+\frac{18\!\cdots\!95}{10\!\cdots\!46}a^{8}+\frac{14\!\cdots\!98}{10\!\cdots\!77}a^{7}+\frac{50\!\cdots\!08}{53\!\cdots\!73}a^{6}-\frac{52\!\cdots\!79}{53\!\cdots\!73}a^{5}+\frac{80\!\cdots\!17}{35\!\cdots\!82}a^{4}-\frac{49\!\cdots\!52}{53\!\cdots\!73}a^{3}+\frac{21\!\cdots\!47}{53\!\cdots\!73}a^{2}-\frac{14\!\cdots\!39}{53\!\cdots\!73}a+\frac{17\!\cdots\!35}{50\!\cdots\!26}$, $\frac{77\!\cdots\!21}{53\!\cdots\!73}a^{11}-\frac{26\!\cdots\!23}{15\!\cdots\!78}a^{10}-\frac{84\!\cdots\!65}{10\!\cdots\!46}a^{9}-\frac{38\!\cdots\!35}{53\!\cdots\!73}a^{8}-\frac{40\!\cdots\!54}{10\!\cdots\!77}a^{7}-\frac{24\!\cdots\!71}{10\!\cdots\!46}a^{6}-\frac{60\!\cdots\!27}{10\!\cdots\!46}a^{5}-\frac{10\!\cdots\!27}{17\!\cdots\!91}a^{4}-\frac{14\!\cdots\!08}{53\!\cdots\!73}a^{3}-\frac{83\!\cdots\!79}{10\!\cdots\!46}a^{2}+\frac{78\!\cdots\!57}{10\!\cdots\!46}a-\frac{12\!\cdots\!00}{25\!\cdots\!13}$, $\frac{39\!\cdots\!19}{53\!\cdots\!73}a^{11}+\frac{35\!\cdots\!25}{15\!\cdots\!78}a^{10}+\frac{35\!\cdots\!97}{10\!\cdots\!46}a^{9}+\frac{68\!\cdots\!13}{53\!\cdots\!73}a^{8}+\frac{16\!\cdots\!63}{10\!\cdots\!77}a^{7}+\frac{10\!\cdots\!34}{53\!\cdots\!73}a^{6}+\frac{18\!\cdots\!17}{53\!\cdots\!73}a^{5}+\frac{41\!\cdots\!92}{17\!\cdots\!91}a^{4}+\frac{59\!\cdots\!71}{10\!\cdots\!46}a^{3}-\frac{32\!\cdots\!47}{10\!\cdots\!46}a^{2}+\frac{25\!\cdots\!43}{53\!\cdots\!73}a-\frac{11\!\cdots\!27}{50\!\cdots\!26}$, $\frac{11\!\cdots\!31}{17\!\cdots\!91}a^{11}+\frac{73\!\cdots\!75}{50\!\cdots\!26}a^{10}+\frac{77\!\cdots\!35}{35\!\cdots\!82}a^{9}+\frac{16\!\cdots\!55}{35\!\cdots\!82}a^{8}+\frac{16\!\cdots\!71}{36\!\cdots\!59}a^{7}+\frac{45\!\cdots\!81}{17\!\cdots\!91}a^{6}-\frac{40\!\cdots\!71}{17\!\cdots\!91}a^{5}+\frac{23\!\cdots\!87}{39\!\cdots\!98}a^{4}-\frac{10\!\cdots\!91}{35\!\cdots\!82}a^{3}+\frac{37\!\cdots\!77}{35\!\cdots\!82}a^{2}-\frac{14\!\cdots\!99}{17\!\cdots\!91}a+\frac{79\!\cdots\!26}{84\!\cdots\!71}$, $\frac{18\!\cdots\!56}{76\!\cdots\!39}a^{11}-\frac{64\!\cdots\!52}{10\!\cdots\!77}a^{10}-\frac{20\!\cdots\!15}{76\!\cdots\!39}a^{9}-\frac{34\!\cdots\!21}{15\!\cdots\!78}a^{8}-\frac{11\!\cdots\!35}{10\!\cdots\!77}a^{7}-\frac{14\!\cdots\!35}{15\!\cdots\!78}a^{6}-\frac{31\!\cdots\!63}{15\!\cdots\!78}a^{5}-\frac{10\!\cdots\!29}{50\!\cdots\!26}a^{4}-\frac{39\!\cdots\!17}{15\!\cdots\!78}a^{3}-\frac{24\!\cdots\!82}{76\!\cdots\!39}a^{2}-\frac{70\!\cdots\!55}{15\!\cdots\!78}a-\frac{10\!\cdots\!20}{36\!\cdots\!59}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 12302.579850899174 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 12302.579850899174 \cdot 5844636}{2\cdot\sqrt{51924135650907635776859701504}}\cr\approx \mathstrut & 9.70774227249150 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^11 + 41*x^10 - 6*x^9 + 1878*x^8 - 4406*x^7 + 63987*x^6 - 136784*x^5 + 1352954*x^4 - 3084580*x^3 + 19917769*x^2 - 31791008*x + 115888143)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 2*x^11 + 41*x^10 - 6*x^9 + 1878*x^8 - 4406*x^7 + 63987*x^6 - 136784*x^5 + 1352954*x^4 - 3084580*x^3 + 19917769*x^2 - 31791008*x + 115888143, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 2*x^11 + 41*x^10 - 6*x^9 + 1878*x^8 - 4406*x^7 + 63987*x^6 - 136784*x^5 + 1352954*x^4 - 3084580*x^3 + 19917769*x^2 - 31791008*x + 115888143);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 2*x^11 + 41*x^10 - 6*x^9 + 1878*x^8 - 4406*x^7 + 63987*x^6 - 136784*x^5 + 1352954*x^4 - 3084580*x^3 + 19917769*x^2 - 31791008*x + 115888143);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_6\times S_3$ (as 12T18):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 36
The 18 conjugacy class representatives for $C_6\times S_3$
Character table for $C_6\times S_3$

Intermediate fields

\(\Q(\sqrt{-2183}) \), \(\Q(\sqrt{-59}) \), \(\Q(\sqrt{37}) \), \(\Q(\sqrt{37}, \sqrt{-59})\), 6.6.1109503312.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: data not computed
Degree 18 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.3.0.1}{3} }^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }^{6}$ ${\href{/padicField/5.6.0.1}{6} }^{2}$ ${\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{6}$ ${\href{/padicField/11.6.0.1}{6} }^{2}$ ${\href{/padicField/13.6.0.1}{6} }^{2}$ ${\href{/padicField/17.6.0.1}{6} }^{2}$ ${\href{/padicField/19.6.0.1}{6} }^{2}$ ${\href{/padicField/23.2.0.1}{2} }^{6}$ ${\href{/padicField/29.2.0.1}{2} }^{6}$ ${\href{/padicField/31.2.0.1}{2} }^{6}$ R ${\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{6}$ ${\href{/padicField/43.2.0.1}{2} }^{6}$ ${\href{/padicField/47.6.0.1}{6} }^{2}$ ${\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{6}$ R

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.6.4.2$x^{6} - 2 x^{3} + 4$$3$$2$$4$$S_3\times C_3$$[\ ]_{3}^{6}$
2.6.4.2$x^{6} - 2 x^{3} + 4$$3$$2$$4$$S_3\times C_3$$[\ ]_{3}^{6}$
\(37\) Copy content Toggle raw display 37.12.10.1$x^{12} + 198 x^{11} + 16347 x^{10} + 720720 x^{9} + 17919555 x^{8} + 239132718 x^{7} + 1363015503 x^{6} + 478272762 x^{5} + 72280395 x^{4} + 32212620 x^{3} + 653616987 x^{2} + 8608429962 x + 47259217318$$6$$2$$10$$C_6\times C_2$$[\ ]_{6}^{2}$
\(59\) Copy content Toggle raw display 59.12.6.1$x^{12} + 358 x^{10} + 36 x^{9} + 53003 x^{8} + 72 x^{7} + 4118916 x^{6} - 737784 x^{5} + 177619595 x^{4} - 58235760 x^{3} + 4088219302 x^{2} - 1289138436 x + 40329774445$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$