Properties

Label 12.0.128536820158464.9
Degree $12$
Signature $[0, 6]$
Discriminant $1.285\times 10^{14}$
Root discriminant \(14.99\)
Ramified primes $2,3$
Class number $1$
Class group trivial
Galois group $S_4$ (as 12T9)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 + 3*x^10 + 6*x^8 + 7*x^6 - 30*x^4 - 33*x^2 + 49)
 
gp: K = bnfinit(y^12 + 3*y^10 + 6*y^8 + 7*y^6 - 30*y^4 - 33*y^2 + 49, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 + 3*x^10 + 6*x^8 + 7*x^6 - 30*x^4 - 33*x^2 + 49);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 + 3*x^10 + 6*x^8 + 7*x^6 - 30*x^4 - 33*x^2 + 49)
 

\( x^{12} + 3x^{10} + 6x^{8} + 7x^{6} - 30x^{4} - 33x^{2} + 49 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(128536820158464\) \(\medspace = 2^{12}\cdot 3^{22}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(14.99\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{7/6}3^{11/6}\approx 16.82379477331321$
Ramified primes:   \(2\), \(3\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $4$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{14}a^{9}-\frac{1}{14}a^{7}-\frac{2}{7}a^{5}-\frac{1}{2}a^{4}-\frac{5}{14}a^{3}-\frac{1}{2}a^{2}-\frac{3}{14}a-\frac{1}{2}$, $\frac{1}{140}a^{10}-\frac{1}{28}a^{9}-\frac{3}{28}a^{8}-\frac{3}{14}a^{7}+\frac{31}{140}a^{6}+\frac{11}{28}a^{5}+\frac{9}{140}a^{4}+\frac{3}{7}a^{3}+\frac{53}{140}a^{2}-\frac{11}{28}a+\frac{9}{20}$, $\frac{1}{140}a^{11}-\frac{1}{4}a^{8}-\frac{19}{140}a^{7}+\frac{27}{70}a^{5}+\frac{1}{4}a^{4}-\frac{57}{140}a^{3}-\frac{1}{2}a^{2}+\frac{9}{70}a+\frac{1}{4}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{6}{35} a^{10} + \frac{3}{7} a^{8} + \frac{46}{35} a^{6} + \frac{54}{35} a^{4} - \frac{102}{35} a^{2} - \frac{6}{5} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{2}{35}a^{11}+\frac{3}{70}a^{10}+\frac{3}{7}a^{9}+\frac{5}{14}a^{8}+\frac{69}{70}a^{7}+\frac{29}{35}a^{6}+\frac{83}{35}a^{5}+\frac{66}{35}a^{4}+\frac{3}{5}a^{3}+\frac{27}{35}a^{2}-\frac{403}{70}a-\frac{53}{10}$, $\frac{1}{28}a^{11}-\frac{1}{14}a^{9}+\frac{1}{4}a^{8}-\frac{3}{28}a^{7}+\frac{1}{2}a^{6}-\frac{11}{14}a^{5}+\frac{7}{4}a^{4}-\frac{47}{28}a^{3}+\frac{3}{2}a^{2}+\frac{33}{14}a-\frac{19}{4}$, $\frac{2}{5}a^{11}+\frac{23}{14}a^{9}+\frac{149}{35}a^{7}+\frac{527}{70}a^{5}-\frac{123}{35}a^{3}-\frac{1171}{70}a$, $\frac{2}{35}a^{11}-\frac{4}{7}a^{10}+\frac{3}{7}a^{9}-\frac{27}{14}a^{8}+\frac{69}{70}a^{7}-\frac{73}{14}a^{6}+\frac{83}{35}a^{5}-\frac{57}{7}a^{4}+\frac{3}{5}a^{3}+\frac{101}{14}a^{2}-\frac{403}{70}a+\frac{31}{2}$, $\frac{3}{70}a^{11}+\frac{1}{14}a^{9}+\frac{4}{35}a^{7}+\frac{1}{35}a^{5}-\frac{1}{2}a^{4}-\frac{4}{5}a^{3}-\frac{1}{2}a^{2}-\frac{31}{70}a+\frac{3}{2}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 944.675683171 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 944.675683171 \cdot 1}{6\cdot\sqrt{128536820158464}}\cr\approx \mathstrut & 0.854470198229 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 + 3*x^10 + 6*x^8 + 7*x^6 - 30*x^4 - 33*x^2 + 49)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 + 3*x^10 + 6*x^8 + 7*x^6 - 30*x^4 - 33*x^2 + 49, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 + 3*x^10 + 6*x^8 + 7*x^6 - 30*x^4 - 33*x^2 + 49);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 + 3*x^10 + 6*x^8 + 7*x^6 - 30*x^4 - 33*x^2 + 49);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_4$ (as 12T9):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 24
The 5 conjugacy class representatives for $S_4$
Character table for $S_4$

Intermediate fields

\(\Q(\sqrt{-3}) \), 3.1.972.2 x3, 6.0.11337408.4, 6.2.3779136.3, 6.0.2834352.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 24
Degree 4 sibling: 4.2.3888.1
Degree 6 siblings: 6.2.3779136.3, 6.0.11337408.4
Degree 8 sibling: 8.0.136048896.1
Degree 12 sibling: 12.2.171382426877952.3
Minimal sibling: 4.2.3888.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ ${\href{/padicField/7.2.0.1}{2} }^{4}{,}\,{\href{/padicField/7.1.0.1}{1} }^{4}$ ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ ${\href{/padicField/13.3.0.1}{3} }^{4}$ ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ ${\href{/padicField/19.3.0.1}{3} }^{4}$ ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ ${\href{/padicField/29.2.0.1}{2} }^{6}$ ${\href{/padicField/31.3.0.1}{3} }^{4}$ ${\href{/padicField/37.2.0.1}{2} }^{4}{,}\,{\href{/padicField/37.1.0.1}{1} }^{4}$ ${\href{/padicField/41.2.0.1}{2} }^{6}$ ${\href{/padicField/43.3.0.1}{3} }^{4}$ ${\href{/padicField/47.2.0.1}{2} }^{6}$ ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.12.12.28$x^{12} + 6 x^{11} + 21 x^{10} + 50 x^{9} + 90 x^{8} + 130 x^{7} + 159 x^{6} + 132 x^{5} + 10 x^{4} - 100 x^{3} - 53 x^{2} + 22 x + 19$$6$$2$$12$$S_4$$[4/3, 4/3]_{3}^{2}$
\(3\) Copy content Toggle raw display 3.6.11.7$x^{6} + 9 x^{2} + 12$$6$$1$$11$$S_3$$[5/2]_{2}$
3.6.11.7$x^{6} + 9 x^{2} + 12$$6$$1$$11$$S_3$$[5/2]_{2}$