Learn more about

Refine search

Results (displaying matches 1-50 of at least 1000) Next

Label Dim. \(A\) Field CM Traces Fricke sign $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
1.66.a.a \(5\) \(26.757\) \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None \(-3959709648\) \(-2\!\cdots\!04\) \(26\!\cdots\!50\) \(-6\!\cdots\!08\) \(+\) \(q+(-791941930-\beta _{1})q^{2}+(-446261486940055+\cdots)q^{3}+\cdots\)
1.68.a.a \(5\) \(28.429\) \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None \(5554901256\) \(34\!\cdots\!72\) \(33\!\cdots\!50\) \(33\!\cdots\!56\) \(+\) \(q+(1110980251-\beta _{1})q^{2}+(688672053797479+\cdots)q^{3}+\cdots\)
1.70.a.a \(5\) \(30.151\) \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None \(-18005734368\) \(-4\!\cdots\!04\) \(-1\!\cdots\!50\) \(76\!\cdots\!92\) \(+\) \(q+(-3601146874-\beta _{1})q^{2}+(-971616465424800+\cdots)q^{3}+\cdots\)
1.72.a.a \(6\) \(31.925\) \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(66157336440\) \(89\!\cdots\!40\) \(-4\!\cdots\!20\) \(33\!\cdots\!00\) \(+\) \(q+(11026222740-\beta _{1})q^{2}+(14982825462961740+\cdots)q^{3}+\cdots\)
1.74.a.a \(5\) \(33.748\) \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None \(-92089333488\) \(-1\!\cdots\!04\) \(23\!\cdots\!50\) \(-4\!\cdots\!08\) \(+\) \(q+(-18417866698-\beta _{1})q^{2}+\cdots\)
1.76.a.a \(6\) \(35.623\) \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(-57080822040\) \(-7\!\cdots\!40\) \(-3\!\cdots\!40\) \(19\!\cdots\!00\) \(+\) \(q+(-9513470340+\beta _{1})q^{2}+\cdots\)
1.78.a.a \(6\) \(37.548\) \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(264721893120\) \(14\!\cdots\!80\) \(-2\!\cdots\!00\) \(27\!\cdots\!00\) \(+\) \(q+(44120315520-\beta _{1})q^{2}+(240268562631348180+\cdots)q^{3}+\cdots\)
1.80.a.a \(6\) \(39.524\) \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(-16086577320\) \(19\!\cdots\!80\) \(60\!\cdots\!40\) \(-2\!\cdots\!00\) \(+\) \(q+(-2681096220+\beta _{1})q^{2}+\cdots\)
1.82.a.a \(6\) \(41.550\) \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(-460872026640\) \(-1\!\cdots\!60\) \(-1\!\cdots\!00\) \(-3\!\cdots\!00\) \(+\) \(q+(-76812004440-\beta _{1})q^{2}+\cdots\)
1.84.a.a \(7\) \(43.627\) \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None \(347450761416\) \(92\!\cdots\!72\) \(95\!\cdots\!70\) \(41\!\cdots\!56\) \(+\) \(q+(49635823059+\beta _{1})q^{2}+\cdots\)
1.86.a.a \(6\) \(45.755\) \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(-3\!\cdots\!00\) \(-1\!\cdots\!00\) \(-9\!\cdots\!00\) \(37\!\cdots\!00\) \(+\) \(q+(-599485114800+\beta _{1})q^{2}+\cdots\)
1.88.a.a \(7\) \(47.933\) \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None \(18\!\cdots\!36\) \(-7\!\cdots\!48\) \(33\!\cdots\!50\) \(45\!\cdots\!56\) \(+\) \(q+(2599574577562+\beta _{1})q^{2}+\cdots\)
1.90.a.a \(7\) \(50.162\) \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None \(-3\!\cdots\!08\) \(-1\!\cdots\!64\) \(10\!\cdots\!50\) \(38\!\cdots\!92\) \(+\) \(q+(-4486761478773-\beta _{1})q^{2}+\cdots\)
1.92.a.a \(7\) \(52.442\) \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None \(38\!\cdots\!56\) \(62\!\cdots\!32\) \(23\!\cdots\!30\) \(-1\!\cdots\!44\) \(+\) \(q+(548816691151+\beta _{1})q^{2}+\cdots\)
2.66.a.a \(2\) \(53.514\) \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None \(-8589934592\) \(11\!\cdots\!92\) \(-7\!\cdots\!00\) \(27\!\cdots\!24\) \(+\) \(q-2^{32}q^{2}+(574529980102596-111\beta )q^{3}+\cdots\)
2.66.a.b \(3\) \(53.514\) \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(12884901888\) \(29\!\cdots\!12\) \(39\!\cdots\!50\) \(42\!\cdots\!64\) \(-\) \(q+2^{32}q^{2}+(994852866070404-\beta _{1}+\cdots)q^{3}+\cdots\)
1.94.a.a \(7\) \(54.773\) \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None \(43\!\cdots\!92\) \(-3\!\cdots\!84\) \(-2\!\cdots\!50\) \(-9\!\cdots\!08\) \(+\) \(q+(6247918101970+\beta _{1})q^{2}+\cdots\)
2.68.a.a \(3\) \(56.858\) \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(-25769803776\) \(-5\!\cdots\!16\) \(-2\!\cdots\!50\) \(21\!\cdots\!12\) \(+\) \(q-2^{33}q^{2}+(-1741882068537572+\cdots)q^{3}+\cdots\)
2.68.a.b \(3\) \(56.858\) \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(25769803776\) \(-2\!\cdots\!44\) \(69\!\cdots\!90\) \(-4\!\cdots\!92\) \(-\) \(q+2^{33}q^{2}+(-794134480773348+\cdots)q^{3}+\cdots\)
1.96.a.a \(8\) \(57.154\) \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(-5\!\cdots\!80\) \(-9\!\cdots\!80\) \(19\!\cdots\!60\) \(31\!\cdots\!00\) \(+\) \(q+(-729457392285+\beta _{1})q^{2}+\cdots\)
1.98.a.a \(7\) \(59.585\) \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None \(-1\!\cdots\!08\) \(10\!\cdots\!96\) \(-3\!\cdots\!50\) \(-1\!\cdots\!08\) \(+\) \(q+(-2385320155001+\beta _{1})q^{2}+\cdots\)
2.70.a.a \(3\) \(60.303\) \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(-51539607552\) \(15\!\cdots\!12\) \(20\!\cdots\!70\) \(-2\!\cdots\!96\) \(+\) \(q-2^{34}q^{2}+(5160893455497204+\cdots)q^{3}+\cdots\)
2.70.a.b \(3\) \(60.303\) \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(51539607552\) \(-2\!\cdots\!52\) \(-5\!\cdots\!50\) \(92\!\cdots\!16\) \(-\) \(q+2^{34}q^{2}+(-7866377652201484+\cdots)q^{3}+\cdots\)
1.100.a.a \(8\) \(62.068\) \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(-2\!\cdots\!20\) \(-2\!\cdots\!20\) \(-4\!\cdots\!60\) \(-5\!\cdots\!00\) \(+\) \(q+(-26005077112815+\beta _{1})q^{2}+\cdots\)
2.72.a.a \(2\) \(63.849\) \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None \(68719476736\) \(-7\!\cdots\!24\) \(40\!\cdots\!00\) \(-2\!\cdots\!52\) \(-\) \(q+2^{35}q^{2}+(-36645276287423412+\cdots)q^{3}+\cdots\)
2.72.a.b \(3\) \(63.849\) \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(-103079215104\) \(23\!\cdots\!36\) \(47\!\cdots\!50\) \(-6\!\cdots\!72\) \(+\) \(q-2^{35}q^{2}+(787523430902412+\beta _{1}+\cdots)q^{3}+\cdots\)
1.102.a.a \(8\) \(64.601\) \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(-4\!\cdots\!40\) \(-1\!\cdots\!60\) \(38\!\cdots\!00\) \(-5\!\cdots\!00\) \(+\) \(q+(-54373636474380-\beta _{1})q^{2}+\cdots\)
1.104.a.a \(8\) \(67.184\) \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(43\!\cdots\!40\) \(50\!\cdots\!40\) \(55\!\cdots\!20\) \(41\!\cdots\!00\) \(+\) \(q+(548616194585055-\beta _{1})q^{2}+\cdots\)
2.74.a.a \(3\) \(67.497\) \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(-206158430208\) \(-3\!\cdots\!72\) \(-3\!\cdots\!50\) \(-2\!\cdots\!64\) \(+\) \(q-2^{36}q^{2}+(-101346400339911324+\cdots)q^{3}+\cdots\)
2.74.a.b \(4\) \(67.497\) \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None \(274877906944\) \(30\!\cdots\!76\) \(-7\!\cdots\!60\) \(36\!\cdots\!12\) \(-\) \(q+2^{36}q^{2}+(76266581430811044+\cdots)q^{3}+\cdots\)
1.106.a.a \(8\) \(69.819\) \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(-9\!\cdots\!20\) \(-3\!\cdots\!80\) \(74\!\cdots\!00\) \(70\!\cdots\!00\) \(+\) \(q+(-1146879061146990+\beta _{1})q^{2}+\cdots\)
2.76.a.a \(3\) \(71.246\) \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(-412316860416\) \(12\!\cdots\!04\) \(16\!\cdots\!50\) \(49\!\cdots\!12\) \(+\) \(q-2^{37}q^{2}+(415752245544732668+\cdots)q^{3}+\cdots\)
2.76.a.b \(3\) \(71.246\) \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(412316860416\) \(45\!\cdots\!16\) \(-1\!\cdots\!90\) \(-3\!\cdots\!52\) \(-\) \(q+2^{37}q^{2}+(152747388742936572+\cdots)q^{3}+\cdots\)
1.108.a.a \(9\) \(72.504\) \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(54\!\cdots\!96\) \(15\!\cdots\!12\) \(24\!\cdots\!50\) \(-9\!\cdots\!44\) \(+\) \(q+(607308845937277-\beta _{1})q^{2}+\cdots\)
2.78.a.a \(3\) \(75.096\) \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(-824633720832\) \(-2\!\cdots\!88\) \(30\!\cdots\!10\) \(-2\!\cdots\!16\) \(+\) \(q-2^{38}q^{2}+(-842429601461527596+\cdots)q^{3}+\cdots\)
2.78.a.b \(3\) \(75.096\) \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(824633720832\) \(-1\!\cdots\!92\) \(64\!\cdots\!50\) \(-1\!\cdots\!44\) \(-\) \(q+2^{38}q^{2}+(-37139225154949164+\cdots)q^{3}+\cdots\)
1.110.a.a \(8\) \(75.239\) \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(22\!\cdots\!00\) \(-7\!\cdots\!00\) \(-2\!\cdots\!00\) \(23\!\cdots\!00\) \(+\) \(q+(286049075864400-\beta _{1})q^{2}+\cdots\)
3.65.b.a \(20\) \(77.821\) \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None \(0\) \(-1\!\cdots\!92\) \(0\) \(68\!\cdots\!76\) \(q+\beta _{1}q^{2}+(-71037898477915+13312\beta _{1}+\cdots)q^{3}+\cdots\)
1.112.a.a \(9\) \(78.026\) \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(73\!\cdots\!76\) \(23\!\cdots\!52\) \(81\!\cdots\!30\) \(78\!\cdots\!56\) \(+\) \(q+(811166749386264+\beta _{1})q^{2}+\cdots\)
2.80.a.a \(3\) \(79.047\) \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(16\!\cdots\!64\) \(-4\!\cdots\!36\) \(-4\!\cdots\!50\) \(14\!\cdots\!12\) \(-\) \(q+2^{39}q^{2}+(-1528323113916241812+\cdots)q^{3}+\cdots\)
2.80.a.b \(4\) \(79.047\) \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None \(-2\!\cdots\!52\) \(43\!\cdots\!88\) \(-2\!\cdots\!80\) \(25\!\cdots\!04\) \(+\) \(q-2^{39}q^{2}+(1099291558848636972+\cdots)q^{3}+\cdots\)
3.66.a.a \(5\) \(80.272\) \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None \(-2586530964\) \(-9\!\cdots\!05\) \(-8\!\cdots\!94\) \(57\!\cdots\!24\) \(+\) \(q+(-517306193-\beta _{1})q^{2}-3^{32}q^{3}+\cdots\)
3.66.a.b \(6\) \(80.272\) \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(6210982962\) \(11\!\cdots\!46\) \(35\!\cdots\!00\) \(13\!\cdots\!04\) \(-\) \(q+(1035163827+\beta _{1})q^{2}+3^{32}q^{3}+\cdots\)
1.114.a.a \(9\) \(80.863\) \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(49\!\cdots\!32\) \(-1\!\cdots\!24\) \(-3\!\cdots\!50\) \(-1\!\cdots\!08\) \(+\) \(q+(552636039763781+\beta _{1})q^{2}+\cdots\)
3.67.b.a \(1\) \(82.760\) \(\Q\) \(\Q(\sqrt{-3}) \) \(0\) \(-5\!\cdots\!23\) \(0\) \(-1\!\cdots\!14\) \(q-3^{33}q^{3}+2^{66}q^{4}+\cdots\)
3.67.b.b \(20\) \(82.760\) \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None \(0\) \(48\!\cdots\!16\) \(0\) \(12\!\cdots\!88\) \(q+\beta _{1}q^{2}+(243548779847726+15513\beta _{1}+\cdots)q^{3}+\cdots\)
2.82.a.a \(3\) \(83.100\) \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None \(-3\!\cdots\!28\) \(12\!\cdots\!88\) \(-2\!\cdots\!50\) \(-5\!\cdots\!24\) \(+\) \(q-2^{40}q^{2}+(4201453557463404996+\cdots)q^{3}+\cdots\)
2.82.a.b \(4\) \(83.100\) \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None \(43\!\cdots\!04\) \(-7\!\cdots\!04\) \(24\!\cdots\!80\) \(18\!\cdots\!92\) \(-\) \(q+2^{40}q^{2}+(-1777934344659239676+\cdots)q^{3}+\cdots\)
1.116.a.a \(9\) \(83.750\) \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(-1\!\cdots\!44\) \(34\!\cdots\!92\) \(-9\!\cdots\!90\) \(18\!\cdots\!56\) \(+\) \(q+(-12908974454383949-\beta _{1}+\cdots)q^{2}+\cdots\)
3.68.a.a \(5\) \(85.287\) \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None \(-16255223088\) \(27\!\cdots\!15\) \(-7\!\cdots\!10\) \(28\!\cdots\!08\) \(-\) \(q+(-3251044618-\beta _{1})q^{2}+3^{33}q^{3}+\cdots\)
Next

In order to download results, determine the number of results.