Properties

Label 24.8.a
Level $24$
Weight $8$
Character orbit 24.a
Rep. character $\chi_{24}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $3$
Sturm bound $32$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 24.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(32\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(24))\).

Total New Old
Modular forms 32 3 29
Cusp forms 24 3 21
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(9\)\(1\)\(8\)\(7\)\(1\)\(6\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(8\)\(1\)\(7\)\(6\)\(1\)\(5\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(7\)\(0\)\(7\)\(5\)\(0\)\(5\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(8\)\(1\)\(7\)\(6\)\(1\)\(5\)\(2\)\(0\)\(2\)
Plus space\(+\)\(17\)\(2\)\(15\)\(13\)\(2\)\(11\)\(4\)\(0\)\(4\)
Minus space\(-\)\(15\)\(1\)\(14\)\(11\)\(1\)\(10\)\(4\)\(0\)\(4\)

Trace form

\( 3 q + 27 q^{3} - 446 q^{5} + 1680 q^{7} + 2187 q^{9} + 3028 q^{11} + 5154 q^{13} - 10638 q^{15} + 38534 q^{17} + 10188 q^{19} - 11664 q^{21} - 164264 q^{23} + 59301 q^{25} + 19683 q^{27} - 106902 q^{29}+ \cdots + 2207412 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(24))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
24.8.a.a 24.a 1.a $1$ $7.497$ \(\Q\) None 24.8.a.a \(0\) \(-27\) \(-26\) \(1056\) $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}-26q^{5}+1056q^{7}+3^{6}q^{9}+\cdots\)
24.8.a.b 24.a 1.a $1$ $7.497$ \(\Q\) None 24.8.a.b \(0\) \(27\) \(-530\) \(120\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}-530q^{5}+120q^{7}+3^{6}q^{9}+\cdots\)
24.8.a.c 24.a 1.a $1$ $7.497$ \(\Q\) None 24.8.a.c \(0\) \(27\) \(110\) \(504\) $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+110q^{5}+504q^{7}+3^{6}q^{9}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(24))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(24)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 2}\)