Properties

Label 24.8.a.c
Level 24
Weight 8
Character orbit 24.a
Self dual Yes
Analytic conductor 7.497
Analytic rank 0
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) = \( 8 \)
Character orbit: \([\chi]\) = 24.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(7.49724061162\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \(q \) \(\mathstrut +\mathstrut 27q^{3} \) \(\mathstrut +\mathstrut 110q^{5} \) \(\mathstrut +\mathstrut 504q^{7} \) \(\mathstrut +\mathstrut 729q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(q \) \(\mathstrut +\mathstrut 27q^{3} \) \(\mathstrut +\mathstrut 110q^{5} \) \(\mathstrut +\mathstrut 504q^{7} \) \(\mathstrut +\mathstrut 729q^{9} \) \(\mathstrut +\mathstrut 3812q^{11} \) \(\mathstrut +\mathstrut 9574q^{13} \) \(\mathstrut +\mathstrut 2970q^{15} \) \(\mathstrut +\mathstrut 26098q^{17} \) \(\mathstrut -\mathstrut 38308q^{19} \) \(\mathstrut +\mathstrut 13608q^{21} \) \(\mathstrut -\mathstrut 71128q^{23} \) \(\mathstrut -\mathstrut 66025q^{25} \) \(\mathstrut +\mathstrut 19683q^{27} \) \(\mathstrut +\mathstrut 74262q^{29} \) \(\mathstrut -\mathstrut 275680q^{31} \) \(\mathstrut +\mathstrut 102924q^{33} \) \(\mathstrut +\mathstrut 55440q^{35} \) \(\mathstrut -\mathstrut 266610q^{37} \) \(\mathstrut +\mathstrut 258498q^{39} \) \(\mathstrut +\mathstrut 684762q^{41} \) \(\mathstrut +\mathstrut 245956q^{43} \) \(\mathstrut +\mathstrut 80190q^{45} \) \(\mathstrut +\mathstrut 478800q^{47} \) \(\mathstrut -\mathstrut 569527q^{49} \) \(\mathstrut +\mathstrut 704646q^{51} \) \(\mathstrut -\mathstrut 569410q^{53} \) \(\mathstrut +\mathstrut 419320q^{55} \) \(\mathstrut -\mathstrut 1034316q^{57} \) \(\mathstrut -\mathstrut 1525324q^{59} \) \(\mathstrut -\mathstrut 2640458q^{61} \) \(\mathstrut +\mathstrut 367416q^{63} \) \(\mathstrut +\mathstrut 1053140q^{65} \) \(\mathstrut +\mathstrut 1416236q^{67} \) \(\mathstrut -\mathstrut 1920456q^{69} \) \(\mathstrut -\mathstrut 3511304q^{71} \) \(\mathstrut +\mathstrut 4738618q^{73} \) \(\mathstrut -\mathstrut 1782675q^{75} \) \(\mathstrut +\mathstrut 1921248q^{77} \) \(\mathstrut +\mathstrut 4661488q^{79} \) \(\mathstrut +\mathstrut 531441q^{81} \) \(\mathstrut -\mathstrut 5729252q^{83} \) \(\mathstrut +\mathstrut 2870780q^{85} \) \(\mathstrut +\mathstrut 2005074q^{87} \) \(\mathstrut +\mathstrut 11993514q^{89} \) \(\mathstrut +\mathstrut 4825296q^{91} \) \(\mathstrut -\mathstrut 7443360q^{93} \) \(\mathstrut -\mathstrut 4213880q^{95} \) \(\mathstrut +\mathstrut 7150754q^{97} \) \(\mathstrut +\mathstrut 2778948q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 27.0000 0 110.000 0 504.000 0 729.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)

Hecke kernels

This newform can be constructed as the kernel of the linear operator \(T_{5} \) \(\mathstrut -\mathstrut 110 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(24))\).