Properties

Label 40.240.8-20.e.1.4
Level $40$
Index $240$
Genus $8$
Analytic rank $1$
Cusps $6$
$\Q$-cusps $2$

Related objects

Downloads

Learn more

Invariants

Level: $40$ $\SL_2$-level: $40$ Newform level: $400$
Index: $240$ $\PSL_2$-index:$120$
Genus: $8 = 1 + \frac{ 120 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 6 }{2}$
Cusps: $6$ (of which $2$ are rational) Cusp widths $20^{6}$ Cusp orbits $1^{2}\cdot2^{2}$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
Analytic rank: $1$
$\Q$-gonality: $3 \le \gamma \le 5$
$\overline{\Q}$-gonality: $3 \le \gamma \le 5$
Rational cusps: $2$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 20A8
Rouse, Sutherland, and Zureick-Brown (RSZB) label: 40.240.8.444

Level structure

$\GL_2(\Z/40\Z)$-generators: $\begin{bmatrix}1&18\\34&9\end{bmatrix}$, $\begin{bmatrix}3&2\\0&9\end{bmatrix}$, $\begin{bmatrix}3&8\\4&7\end{bmatrix}$, $\begin{bmatrix}7&2\\34&3\end{bmatrix}$, $\begin{bmatrix}27&38\\30&11\end{bmatrix}$
Contains $-I$: no $\quad$ (see 20.120.8.e.1 for the level structure with $-I$)
Cyclic 40-isogeny field degree: $12$
Cyclic 40-torsion field degree: $192$
Full 40-torsion field degree: $3072$

Jacobian

Conductor: $2^{18}\cdot5^{16}$
Simple: no
Squarefree: no
Decomposition: $1^{8}$
Newforms: 50.2.a.a, 50.2.a.b$^{3}$, 200.2.a.a, 200.2.a.e, 400.2.a.d, 400.2.a.h

Models

Canonical model in $\mathbb{P}^{ 7 }$ defined by 15 equations

$ 0 $ $=$ $ y z + y w - y t + y u + 2 y r - z v - w t - w u $
$=$ $x z + x t - x u + y r - z t - z u - z v - w t - w u$
$=$ $x y + x t + x u - y v - z t + z u + z r - w t + w u$
$=$ $x z + 2 x w - x t + x u + 2 x r + y z + y w + y t - y u + w t + w u$
$=$$\cdots$
Copy content Toggle raw display

Singular plane model Singular plane model

$ 0 $ $=$ $ - 825 x^{5} y^{6} - 400 x^{5} y^{5} z - 1500 x^{5} y^{4} z^{2} - 3000 x^{5} y^{3} z^{3} + \cdots + 8 y z^{10} $
Copy content Toggle raw display

Rational points

This modular curve has 2 rational cusps but no known non-cuspidal rational points. The following are the coordinates of the rational cusps on this modular curve.

Canonical model
$(0:0:0:0:1:0:-1:1)$, $(0:0:0:0:0:-1:1:1)$

Maps to other modular curves

Map of degree 2 from the canonical model of this modular curve to the canonical model of the modular curve 20.60.4.b.1 :

$\displaystyle X$ $=$ $\displaystyle -x$
$\displaystyle Y$ $=$ $\displaystyle x+y$
$\displaystyle Z$ $=$ $\displaystyle z$
$\displaystyle W$ $=$ $\displaystyle w$

Equation of the image curve:

$0$ $=$ $ X^{2}+XY+2Y^{2}-Z^{2}-ZW $
$=$ $ 2X^{2}Y+2XY^{2}+2XZW+YZW+XW^{2}+YW^{2} $

Map of degree 1 from the canonical model of this modular curve to the plane model of the modular curve 20.120.8.e.1 :

$\displaystyle X$ $=$ $\displaystyle x$
$\displaystyle Y$ $=$ $\displaystyle y+z$
$\displaystyle Z$ $=$ $\displaystyle t$

Equation of the image curve:

$0$ $=$ $ -825X^{5}Y^{6}-400X^{5}Y^{5}Z-1500X^{5}Y^{4}Z^{2}-3000X^{5}Y^{3}Z^{3}-3500X^{5}Y^{2}Z^{4}-2400X^{5}YZ^{5}-800X^{5}Z^{6}-1500X^{4}Y^{7}+2000X^{4}Y^{6}Z+2500X^{4}Y^{5}Z^{2}-2500X^{4}Y^{3}Z^{4}-3000X^{4}Y^{2}Z^{5}-1000X^{4}YZ^{6}-1500X^{3}Y^{8}+2000X^{3}Y^{7}Z+2500X^{3}Y^{6}Z^{2}-2500X^{3}Y^{4}Z^{4}-3000X^{3}Y^{3}Z^{5}-1000X^{3}Y^{2}Z^{6}-750X^{2}Y^{9}+1000X^{2}Y^{8}Z+1250X^{2}Y^{7}Z^{2}-1250X^{2}Y^{5}Z^{4}-1500X^{2}Y^{4}Z^{5}-500X^{2}Y^{3}Z^{6}-150XY^{10}+350XY^{9}Z+200XY^{8}Z^{2}-450XY^{7}Z^{3}-500XY^{6}Z^{4}-50XY^{5}Z^{5}+450XY^{4}Z^{6}+400XY^{3}Z^{7}+100XY^{2}Z^{8}-28Y^{11}+20Y^{10}Z+120Y^{9}Z^{2}+60Y^{8}Z^{3}-280Y^{7}Z^{4}-252Y^{6}Z^{5}+140Y^{5}Z^{6}+240Y^{4}Z^{7}+120Y^{3}Z^{8}+40Y^{2}Z^{9}+8YZ^{10} $

Modular covers

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank Kernel decomposition
40.48.0-20.c.1.6 $40$ $5$ $5$ $0$ $0$ full Jacobian
40.120.4-20.b.1.4 $40$ $2$ $2$ $4$ $0$ $1^{4}$
40.120.4-20.b.1.6 $40$ $2$ $2$ $4$ $0$ $1^{4}$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus Rank Kernel decomposition
40.480.16-40.o.1.6 $40$ $2$ $2$ $16$ $3$ $2^{4}$
40.480.16-40.o.1.14 $40$ $2$ $2$ $16$ $3$ $2^{4}$
40.480.16-40.o.2.9 $40$ $2$ $2$ $16$ $3$ $2^{4}$
40.480.16-40.o.2.11 $40$ $2$ $2$ $16$ $3$ $2^{4}$
40.480.16-40.p.1.3 $40$ $2$ $2$ $16$ $3$ $2^{4}$
40.480.16-40.p.1.4 $40$ $2$ $2$ $16$ $3$ $2^{4}$
40.480.16-40.p.2.5 $40$ $2$ $2$ $16$ $3$ $2^{4}$
40.480.16-40.p.2.7 $40$ $2$ $2$ $16$ $3$ $2^{4}$
40.480.16-40.q.1.3 $40$ $2$ $2$ $16$ $1$ $2^{4}$
40.480.16-40.q.1.4 $40$ $2$ $2$ $16$ $1$ $2^{4}$
40.480.16-40.q.2.5 $40$ $2$ $2$ $16$ $1$ $2^{4}$
40.480.16-40.q.2.7 $40$ $2$ $2$ $16$ $1$ $2^{4}$
40.480.16-40.r.1.5 $40$ $2$ $2$ $16$ $1$ $2^{4}$
40.480.16-40.r.1.13 $40$ $2$ $2$ $16$ $1$ $2^{4}$
40.480.16-40.r.2.13 $40$ $2$ $2$ $16$ $1$ $2^{4}$
40.480.16-40.r.2.14 $40$ $2$ $2$ $16$ $1$ $2^{4}$
40.480.17-40.z.1.13 $40$ $2$ $2$ $17$ $3$ $1^{7}\cdot2$
40.480.17-40.z.1.15 $40$ $2$ $2$ $17$ $3$ $1^{7}\cdot2$
40.480.17-40.bh.1.11 $40$ $2$ $2$ $17$ $5$ $1^{7}\cdot2$
40.480.17-40.bh.1.15 $40$ $2$ $2$ $17$ $5$ $1^{7}\cdot2$
40.480.17-40.cq.1.11 $40$ $2$ $2$ $17$ $5$ $1^{7}\cdot2$
40.480.17-40.cq.1.15 $40$ $2$ $2$ $17$ $5$ $1^{7}\cdot2$
40.480.17-40.cs.1.13 $40$ $2$ $2$ $17$ $4$ $1^{7}\cdot2$
40.480.17-40.cs.1.15 $40$ $2$ $2$ $17$ $4$ $1^{7}\cdot2$
40.720.22-20.e.1.7 $40$ $3$ $3$ $22$ $2$ $1^{14}$
40.960.29-20.r.1.11 $40$ $4$ $4$ $29$ $4$ $1^{21}$
120.480.16-120.bg.1.12 $120$ $2$ $2$ $16$ $?$ not computed
120.480.16-120.bg.1.18 $120$ $2$ $2$ $16$ $?$ not computed
120.480.16-120.bg.2.5 $120$ $2$ $2$ $16$ $?$ not computed
120.480.16-120.bg.2.30 $120$ $2$ $2$ $16$ $?$ not computed
120.480.16-120.bh.1.15 $120$ $2$ $2$ $16$ $?$ not computed
120.480.16-120.bh.1.30 $120$ $2$ $2$ $16$ $?$ not computed
120.480.16-120.bh.2.14 $120$ $2$ $2$ $16$ $?$ not computed
120.480.16-120.bh.2.23 $120$ $2$ $2$ $16$ $?$ not computed
120.480.16-120.bi.1.16 $120$ $2$ $2$ $16$ $?$ not computed
120.480.16-120.bi.1.23 $120$ $2$ $2$ $16$ $?$ not computed
120.480.16-120.bi.2.8 $120$ $2$ $2$ $16$ $?$ not computed
120.480.16-120.bi.2.27 $120$ $2$ $2$ $16$ $?$ not computed
120.480.16-120.bj.1.14 $120$ $2$ $2$ $16$ $?$ not computed
120.480.16-120.bj.1.18 $120$ $2$ $2$ $16$ $?$ not computed
120.480.16-120.bj.2.9 $120$ $2$ $2$ $16$ $?$ not computed
120.480.16-120.bj.2.28 $120$ $2$ $2$ $16$ $?$ not computed
120.480.17-120.cv.1.17 $120$ $2$ $2$ $17$ $?$ not computed
120.480.17-120.cv.1.31 $120$ $2$ $2$ $17$ $?$ not computed
120.480.17-120.cy.1.23 $120$ $2$ $2$ $17$ $?$ not computed
120.480.17-120.cy.1.25 $120$ $2$ $2$ $17$ $?$ not computed
120.480.17-120.hg.1.15 $120$ $2$ $2$ $17$ $?$ not computed
120.480.17-120.hg.1.19 $120$ $2$ $2$ $17$ $?$ not computed
120.480.17-120.hk.1.7 $120$ $2$ $2$ $17$ $?$ not computed
120.480.17-120.hk.1.27 $120$ $2$ $2$ $17$ $?$ not computed
280.480.16-280.o.1.10 $280$ $2$ $2$ $16$ $?$ not computed
280.480.16-280.o.1.20 $280$ $2$ $2$ $16$ $?$ not computed
280.480.16-280.o.2.5 $280$ $2$ $2$ $16$ $?$ not computed
280.480.16-280.o.2.30 $280$ $2$ $2$ $16$ $?$ not computed
280.480.16-280.p.1.12 $280$ $2$ $2$ $16$ $?$ not computed
280.480.16-280.p.1.23 $280$ $2$ $2$ $16$ $?$ not computed
280.480.16-280.p.2.14 $280$ $2$ $2$ $16$ $?$ not computed
280.480.16-280.p.2.24 $280$ $2$ $2$ $16$ $?$ not computed
280.480.16-280.q.1.10 $280$ $2$ $2$ $16$ $?$ not computed
280.480.16-280.q.1.24 $280$ $2$ $2$ $16$ $?$ not computed
280.480.16-280.q.2.16 $280$ $2$ $2$ $16$ $?$ not computed
280.480.16-280.q.2.20 $280$ $2$ $2$ $16$ $?$ not computed
280.480.16-280.r.1.10 $280$ $2$ $2$ $16$ $?$ not computed
280.480.16-280.r.1.22 $280$ $2$ $2$ $16$ $?$ not computed
280.480.16-280.r.2.9 $280$ $2$ $2$ $16$ $?$ not computed
280.480.16-280.r.2.28 $280$ $2$ $2$ $16$ $?$ not computed
280.480.17-280.cu.1.7 $280$ $2$ $2$ $17$ $?$ not computed
280.480.17-280.cu.1.27 $280$ $2$ $2$ $17$ $?$ not computed
280.480.17-280.cw.1.11 $280$ $2$ $2$ $17$ $?$ not computed
280.480.17-280.cw.1.23 $280$ $2$ $2$ $17$ $?$ not computed
280.480.17-280.ea.1.11 $280$ $2$ $2$ $17$ $?$ not computed
280.480.17-280.ea.1.23 $280$ $2$ $2$ $17$ $?$ not computed
280.480.17-280.ec.1.3 $280$ $2$ $2$ $17$ $?$ not computed
280.480.17-280.ec.1.31 $280$ $2$ $2$ $17$ $?$ not computed