Properties

Label 50.2.a.a
Level 50
Weight 2
Character orbit 50.a
Self dual Yes
Analytic conductor 0.399
Analytic rank 0
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 50.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(0.399252010106\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \(q \) \(\mathstrut -\mathstrut q^{2} \) \(\mathstrut +\mathstrut q^{3} \) \(\mathstrut +\mathstrut q^{4} \) \(\mathstrut -\mathstrut q^{6} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut -\mathstrut q^{8} \) \(\mathstrut -\mathstrut 2q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(q \) \(\mathstrut -\mathstrut q^{2} \) \(\mathstrut +\mathstrut q^{3} \) \(\mathstrut +\mathstrut q^{4} \) \(\mathstrut -\mathstrut q^{6} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut -\mathstrut q^{8} \) \(\mathstrut -\mathstrut 2q^{9} \) \(\mathstrut -\mathstrut 3q^{11} \) \(\mathstrut +\mathstrut q^{12} \) \(\mathstrut -\mathstrut 4q^{13} \) \(\mathstrut -\mathstrut 2q^{14} \) \(\mathstrut +\mathstrut q^{16} \) \(\mathstrut -\mathstrut 3q^{17} \) \(\mathstrut +\mathstrut 2q^{18} \) \(\mathstrut +\mathstrut 5q^{19} \) \(\mathstrut +\mathstrut 2q^{21} \) \(\mathstrut +\mathstrut 3q^{22} \) \(\mathstrut +\mathstrut 6q^{23} \) \(\mathstrut -\mathstrut q^{24} \) \(\mathstrut +\mathstrut 4q^{26} \) \(\mathstrut -\mathstrut 5q^{27} \) \(\mathstrut +\mathstrut 2q^{28} \) \(\mathstrut +\mathstrut 2q^{31} \) \(\mathstrut -\mathstrut q^{32} \) \(\mathstrut -\mathstrut 3q^{33} \) \(\mathstrut +\mathstrut 3q^{34} \) \(\mathstrut -\mathstrut 2q^{36} \) \(\mathstrut +\mathstrut 2q^{37} \) \(\mathstrut -\mathstrut 5q^{38} \) \(\mathstrut -\mathstrut 4q^{39} \) \(\mathstrut -\mathstrut 3q^{41} \) \(\mathstrut -\mathstrut 2q^{42} \) \(\mathstrut -\mathstrut 4q^{43} \) \(\mathstrut -\mathstrut 3q^{44} \) \(\mathstrut -\mathstrut 6q^{46} \) \(\mathstrut +\mathstrut 12q^{47} \) \(\mathstrut +\mathstrut q^{48} \) \(\mathstrut -\mathstrut 3q^{49} \) \(\mathstrut -\mathstrut 3q^{51} \) \(\mathstrut -\mathstrut 4q^{52} \) \(\mathstrut +\mathstrut 6q^{53} \) \(\mathstrut +\mathstrut 5q^{54} \) \(\mathstrut -\mathstrut 2q^{56} \) \(\mathstrut +\mathstrut 5q^{57} \) \(\mathstrut +\mathstrut 2q^{61} \) \(\mathstrut -\mathstrut 2q^{62} \) \(\mathstrut -\mathstrut 4q^{63} \) \(\mathstrut +\mathstrut q^{64} \) \(\mathstrut +\mathstrut 3q^{66} \) \(\mathstrut -\mathstrut 13q^{67} \) \(\mathstrut -\mathstrut 3q^{68} \) \(\mathstrut +\mathstrut 6q^{69} \) \(\mathstrut +\mathstrut 12q^{71} \) \(\mathstrut +\mathstrut 2q^{72} \) \(\mathstrut +\mathstrut 11q^{73} \) \(\mathstrut -\mathstrut 2q^{74} \) \(\mathstrut +\mathstrut 5q^{76} \) \(\mathstrut -\mathstrut 6q^{77} \) \(\mathstrut +\mathstrut 4q^{78} \) \(\mathstrut -\mathstrut 10q^{79} \) \(\mathstrut +\mathstrut q^{81} \) \(\mathstrut +\mathstrut 3q^{82} \) \(\mathstrut -\mathstrut 9q^{83} \) \(\mathstrut +\mathstrut 2q^{84} \) \(\mathstrut +\mathstrut 4q^{86} \) \(\mathstrut +\mathstrut 3q^{88} \) \(\mathstrut +\mathstrut 15q^{89} \) \(\mathstrut -\mathstrut 8q^{91} \) \(\mathstrut +\mathstrut 6q^{92} \) \(\mathstrut +\mathstrut 2q^{93} \) \(\mathstrut -\mathstrut 12q^{94} \) \(\mathstrut -\mathstrut q^{96} \) \(\mathstrut +\mathstrut 2q^{97} \) \(\mathstrut +\mathstrut 3q^{98} \) \(\mathstrut +\mathstrut 6q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 1.00000 1.00000 0 −1.00000 2.00000 −1.00000 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(5\) \(-1\)

Hecke kernels

This newform can be constructed as the kernel of the linear operator \(T_{3} \) \(\mathstrut -\mathstrut 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(50))\).