Properties

Label 312.48.0-312.du.1.10
Level $312$
Index $48$
Genus $0$
Cusps $6$
$\Q$-cusps $0$

Related objects

Downloads

Learn more

Invariants

Level: $312$ $\SL_2$-level: $8$
Index: $48$ $\PSL_2$-index:$24$
Genus: $0 = 1 + \frac{ 24 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 6 }{2}$
Cusps: $6$ (none of which are rational) Cusp widths $2^{4}\cdot8^{2}$ Cusp orbits $2^{3}$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1 \le \gamma \le 2$
$\overline{\Q}$-gonality: $1$
Rational cusps: $0$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 8G0

Level structure

$\GL_2(\Z/312\Z)$-generators: $\begin{bmatrix}147&4\\112&111\end{bmatrix}$, $\begin{bmatrix}203&156\\269&275\end{bmatrix}$, $\begin{bmatrix}247&36\\218&65\end{bmatrix}$, $\begin{bmatrix}303&172\\106&55\end{bmatrix}$
Contains $-I$: no $\quad$ (see 312.24.0.du.1 for the level structure with $-I$)
Cyclic 312-isogeny field degree: $112$
Cyclic 312-torsion field degree: $5376$
Full 312-torsion field degree: $40255488$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has real points and $\Q_p$ points for $p$ not dividing the level, but no known rational points.

Modular covers

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
24.24.0-24.ba.1.12 $24$ $2$ $2$ $0$ $0$
312.24.0-24.ba.1.10 $312$ $2$ $2$ $0$ $?$
104.24.0-104.y.1.3 $104$ $2$ $2$ $0$ $?$
312.24.0-104.y.1.14 $312$ $2$ $2$ $0$ $?$
312.24.0-312.s.1.3 $312$ $2$ $2$ $0$ $?$
312.24.0-312.s.1.15 $312$ $2$ $2$ $0$ $?$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
312.144.4-312.ni.1.14 $312$ $3$ $3$ $4$
312.192.3-312.qa.1.14 $312$ $4$ $4$ $3$