Properties

Label 24.24.0-24.ba.1.12
Level $24$
Index $24$
Genus $0$
Analytic rank $0$
Cusps $4$
$\Q$-cusps $2$

Related objects

Downloads

Learn more

Invariants

Level: $24$ $\SL_2$-level: $8$
Index: $24$ $\PSL_2$-index:$12$
Genus: $0 = 1 + \frac{ 12 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 4 }{2}$
Cusps: $4$ (of which $2$ are rational) Cusp widths $1^{2}\cdot2\cdot8$ Cusp orbits $1^{2}\cdot2$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $2$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 8C0
Rouse, Sutherland, and Zureick-Brown (RSZB) label: 24.24.0.166

Level structure

$\GL_2(\Z/24\Z)$-generators: $\begin{bmatrix}5&1\\4&19\end{bmatrix}$, $\begin{bmatrix}7&12\\12&23\end{bmatrix}$, $\begin{bmatrix}19&23\\12&19\end{bmatrix}$, $\begin{bmatrix}23&12\\12&19\end{bmatrix}$
Contains $-I$: no $\quad$ (see 24.12.0.ba.1 for the level structure with $-I$)
Cyclic 24-isogeny field degree: $8$
Cyclic 24-torsion field degree: $32$
Full 24-torsion field degree: $3072$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points, including 1542 stored non-cuspidal points.

Maps to other modular curves

$j$-invariant map of degree 12 to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle \frac{1}{2^8\cdot3}\cdot\frac{(3x+y)^{12}(9x^{4}-192x^{2}y^{2}+256y^{4})^{3}}{y^{8}x^{2}(3x+y)^{12}(3x^{2}-64y^{2})}$

Modular covers

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
8.12.0-4.c.1.5 $8$ $2$ $2$ $0$ $0$
12.12.0-4.c.1.1 $12$ $2$ $2$ $0$ $0$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
24.48.0-24.m.1.5 $24$ $2$ $2$ $0$
24.48.0-24.n.1.8 $24$ $2$ $2$ $0$
24.48.0-24.bc.1.2 $24$ $2$ $2$ $0$
24.48.0-24.be.1.8 $24$ $2$ $2$ $0$
24.48.0-24.bh.1.1 $24$ $2$ $2$ $0$
24.48.0-24.bi.1.4 $24$ $2$ $2$ $0$
24.48.0-24.bs.1.4 $24$ $2$ $2$ $0$
24.48.0-24.bv.1.4 $24$ $2$ $2$ $0$
24.72.2-24.cu.1.27 $24$ $3$ $3$ $2$
24.96.1-24.iu.1.18 $24$ $4$ $4$ $1$
120.48.0-120.cu.1.2 $120$ $2$ $2$ $0$
120.48.0-120.cw.1.14 $120$ $2$ $2$ $0$
120.48.0-120.cy.1.3 $120$ $2$ $2$ $0$
120.48.0-120.da.1.14 $120$ $2$ $2$ $0$
120.48.0-120.ds.1.1 $120$ $2$ $2$ $0$
120.48.0-120.du.1.7 $120$ $2$ $2$ $0$
120.48.0-120.ea.1.7 $120$ $2$ $2$ $0$
120.48.0-120.ec.1.7 $120$ $2$ $2$ $0$
120.120.4-120.cc.1.4 $120$ $5$ $5$ $4$
120.144.3-120.byo.1.41 $120$ $6$ $6$ $3$
120.240.7-120.di.1.17 $120$ $10$ $10$ $7$
168.48.0-168.co.1.13 $168$ $2$ $2$ $0$
168.48.0-168.cq.1.14 $168$ $2$ $2$ $0$
168.48.0-168.cs.1.1 $168$ $2$ $2$ $0$
168.48.0-168.cu.1.14 $168$ $2$ $2$ $0$
168.48.0-168.dm.1.2 $168$ $2$ $2$ $0$
168.48.0-168.do.1.10 $168$ $2$ $2$ $0$
168.48.0-168.du.1.10 $168$ $2$ $2$ $0$
168.48.0-168.dw.1.9 $168$ $2$ $2$ $0$
168.192.5-168.gc.1.22 $168$ $8$ $8$ $5$
168.504.16-168.di.1.43 $168$ $21$ $21$ $16$
264.48.0-264.co.1.9 $264$ $2$ $2$ $0$
264.48.0-264.cq.1.14 $264$ $2$ $2$ $0$
264.48.0-264.cs.1.13 $264$ $2$ $2$ $0$
264.48.0-264.cu.1.14 $264$ $2$ $2$ $0$
264.48.0-264.dm.1.1 $264$ $2$ $2$ $0$
264.48.0-264.do.1.14 $264$ $2$ $2$ $0$
264.48.0-264.du.1.13 $264$ $2$ $2$ $0$
264.48.0-264.dw.1.13 $264$ $2$ $2$ $0$
264.288.9-264.ikc.1.18 $264$ $12$ $12$ $9$
312.48.0-312.cu.1.13 $312$ $2$ $2$ $0$
312.48.0-312.cw.1.14 $312$ $2$ $2$ $0$
312.48.0-312.cy.1.1 $312$ $2$ $2$ $0$
312.48.0-312.da.1.14 $312$ $2$ $2$ $0$
312.48.0-312.ds.1.2 $312$ $2$ $2$ $0$
312.48.0-312.du.1.10 $312$ $2$ $2$ $0$
312.48.0-312.ea.1.10 $312$ $2$ $2$ $0$
312.48.0-312.ec.1.9 $312$ $2$ $2$ $0$
312.336.11-312.cs.1.22 $312$ $14$ $14$ $11$