Minimal equation
Minimal equation
Simplified equation
$y^2 + x^3y = x^5 - 5x^4 + 11x^3 - 13x^2 + 9x - 3$ | (homogenize, simplify) |
$y^2 + x^3y = x^5z - 5x^4z^2 + 11x^3z^3 - 13x^2z^4 + 9xz^5 - 3z^6$ | (dehomogenize, simplify) |
$y^2 = x^6 + 4x^5 - 20x^4 + 44x^3 - 52x^2 + 36x - 12$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(1083\) | \(=\) | \( 3 \cdot 19^{2} \) |
|
Discriminant: | \( \Delta \) | \(=\) | \(20577\) | \(=\) | \( 3 \cdot 19^{3} \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(904\) | \(=\) | \( 2^{3} \cdot 113 \) |
\( I_4 \) | \(=\) | \(13684\) | \(=\) | \( 2^{2} \cdot 11 \cdot 311 \) |
\( I_6 \) | \(=\) | \(4578992\) | \(=\) | \( 2^{4} \cdot 11 \cdot 26017 \) |
\( I_{10} \) | \(=\) | \(82308\) | \(=\) | \( 2^{2} \cdot 3 \cdot 19^{3} \) |
\( J_2 \) | \(=\) | \(452\) | \(=\) | \( 2^{2} \cdot 113 \) |
\( J_4 \) | \(=\) | \(6232\) | \(=\) | \( 2^{3} \cdot 19 \cdot 41 \) |
\( J_6 \) | \(=\) | \(-8664\) | \(=\) | \( - 2^{3} \cdot 3 \cdot 19^{2} \) |
\( J_8 \) | \(=\) | \(-10688488\) | \(=\) | \( - 2^{3} \cdot 19^{2} \cdot 3701 \) |
\( J_{10} \) | \(=\) | \(20577\) | \(=\) | \( 3 \cdot 19^{3} \) |
\( g_1 \) | \(=\) | \(18866536236032/20577\) | ||
\( g_2 \) | \(=\) | \(30289293824/1083\) | ||
\( g_3 \) | \(=\) | \(-1634432/19\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2^2$ |
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2^2$ |
|
Rational points
Number of rational Weierstrass points: \(0\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z \oplus \Z/{3}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(x^2 - xz + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(z^3\) | \(0.075149\) | \(\infty\) |
\((1 : -1 : 1) - (1 : -1 : 0)\) | \(z (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0\) | \(3\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(x^2 - xz + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(z^3\) | \(0.075149\) | \(\infty\) |
\((1 : -1 : 1) - (1 : -1 : 0)\) | \(z (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0\) | \(3\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) | \(x^2 - xz + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 + 2z^3\) | \(0.075149\) | \(\infty\) |
\((1 : -1 : 1) - (1 : -1 : 0)\) | \(z (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 - 2z^3\) | \(0\) | \(3\) |
BSD invariants
Hasse-Weil conjecture: | verified |
Analytic rank: | \(1\) |
Mordell-Weil rank: | \(1\) |
2-Selmer rank: | \(1\) |
Regulator: | \( 0.075149 \) |
Real period: | \( 7.554151 \) |
Tamagawa product: | \( 3 \) |
Torsion order: | \( 3 \) |
Leading coefficient: | \( 0.189229 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number | L-factor | Cluster picture | Tame reduction? |
---|---|---|---|---|---|---|---|
\(3\) | \(1\) | \(1\) | \(1\) | \(1\) | \(( 1 + T )( 1 + 2 T + 3 T^{2} )\) | yes | |
\(19\) | \(2\) | \(3\) | \(3\) | \(-1\) | \(( 1 - T )( 1 + T )\) | yes |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.15.2 | no |
\(3\) | 3.2160.20 | yes |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\times\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Splits over \(\Q\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
Elliptic curve isogeny class 19.a
Elliptic curve isogeny class 57.a
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).