# Properties

 Label 57.2.a.a Level $57$ Weight $2$ Character orbit 57.a Self dual yes Analytic conductor $0.455$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [57,2,Mod(1,57)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(57, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("57.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$57 = 3 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 57.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$0.455147291521$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - 2 q^{2} - q^{3} + 2 q^{4} - 3 q^{5} + 2 q^{6} - 5 q^{7} + q^{9}+O(q^{10})$$ q - 2 * q^2 - q^3 + 2 * q^4 - 3 * q^5 + 2 * q^6 - 5 * q^7 + q^9 $$q - 2 q^{2} - q^{3} + 2 q^{4} - 3 q^{5} + 2 q^{6} - 5 q^{7} + q^{9} + 6 q^{10} + q^{11} - 2 q^{12} + 2 q^{13} + 10 q^{14} + 3 q^{15} - 4 q^{16} - q^{17} - 2 q^{18} - q^{19} - 6 q^{20} + 5 q^{21} - 2 q^{22} - 4 q^{23} + 4 q^{25} - 4 q^{26} - q^{27} - 10 q^{28} - 2 q^{29} - 6 q^{30} - 6 q^{31} + 8 q^{32} - q^{33} + 2 q^{34} + 15 q^{35} + 2 q^{36} + 2 q^{38} - 2 q^{39} - 10 q^{42} - q^{43} + 2 q^{44} - 3 q^{45} + 8 q^{46} - 9 q^{47} + 4 q^{48} + 18 q^{49} - 8 q^{50} + q^{51} + 4 q^{52} + 10 q^{53} + 2 q^{54} - 3 q^{55} + q^{57} + 4 q^{58} - 8 q^{59} + 6 q^{60} - q^{61} + 12 q^{62} - 5 q^{63} - 8 q^{64} - 6 q^{65} + 2 q^{66} + 8 q^{67} - 2 q^{68} + 4 q^{69} - 30 q^{70} - 12 q^{71} - 11 q^{73} - 4 q^{75} - 2 q^{76} - 5 q^{77} + 4 q^{78} + 16 q^{79} + 12 q^{80} + q^{81} + 12 q^{83} + 10 q^{84} + 3 q^{85} + 2 q^{86} + 2 q^{87} - 6 q^{89} + 6 q^{90} - 10 q^{91} - 8 q^{92} + 6 q^{93} + 18 q^{94} + 3 q^{95} - 8 q^{96} - 10 q^{97} - 36 q^{98} + q^{99}+O(q^{100})$$ q - 2 * q^2 - q^3 + 2 * q^4 - 3 * q^5 + 2 * q^6 - 5 * q^7 + q^9 + 6 * q^10 + q^11 - 2 * q^12 + 2 * q^13 + 10 * q^14 + 3 * q^15 - 4 * q^16 - q^17 - 2 * q^18 - q^19 - 6 * q^20 + 5 * q^21 - 2 * q^22 - 4 * q^23 + 4 * q^25 - 4 * q^26 - q^27 - 10 * q^28 - 2 * q^29 - 6 * q^30 - 6 * q^31 + 8 * q^32 - q^33 + 2 * q^34 + 15 * q^35 + 2 * q^36 + 2 * q^38 - 2 * q^39 - 10 * q^42 - q^43 + 2 * q^44 - 3 * q^45 + 8 * q^46 - 9 * q^47 + 4 * q^48 + 18 * q^49 - 8 * q^50 + q^51 + 4 * q^52 + 10 * q^53 + 2 * q^54 - 3 * q^55 + q^57 + 4 * q^58 - 8 * q^59 + 6 * q^60 - q^61 + 12 * q^62 - 5 * q^63 - 8 * q^64 - 6 * q^65 + 2 * q^66 + 8 * q^67 - 2 * q^68 + 4 * q^69 - 30 * q^70 - 12 * q^71 - 11 * q^73 - 4 * q^75 - 2 * q^76 - 5 * q^77 + 4 * q^78 + 16 * q^79 + 12 * q^80 + q^81 + 12 * q^83 + 10 * q^84 + 3 * q^85 + 2 * q^86 + 2 * q^87 - 6 * q^89 + 6 * q^90 - 10 * q^91 - 8 * q^92 + 6 * q^93 + 18 * q^94 + 3 * q^95 - 8 * q^96 - 10 * q^97 - 36 * q^98 + q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
−2.00000 −1.00000 2.00000 −3.00000 2.00000 −5.00000 0 1.00000 6.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$+1$$
$$19$$ $$+1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 57.2.a.a 1
3.b odd 2 1 171.2.a.d 1
4.b odd 2 1 912.2.a.g 1
5.b even 2 1 1425.2.a.j 1
5.c odd 4 2 1425.2.c.b 2
7.b odd 2 1 2793.2.a.b 1
8.b even 2 1 3648.2.a.bh 1
8.d odd 2 1 3648.2.a.r 1
11.b odd 2 1 6897.2.a.f 1
12.b even 2 1 2736.2.a.v 1
13.b even 2 1 9633.2.a.o 1
15.d odd 2 1 4275.2.a.b 1
19.b odd 2 1 1083.2.a.e 1
21.c even 2 1 8379.2.a.p 1
57.d even 2 1 3249.2.a.b 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
57.2.a.a 1 1.a even 1 1 trivial
171.2.a.d 1 3.b odd 2 1
912.2.a.g 1 4.b odd 2 1
1083.2.a.e 1 19.b odd 2 1
1425.2.a.j 1 5.b even 2 1
1425.2.c.b 2 5.c odd 4 2
2736.2.a.v 1 12.b even 2 1
2793.2.a.b 1 7.b odd 2 1
3249.2.a.b 1 57.d even 2 1
3648.2.a.r 1 8.d odd 2 1
3648.2.a.bh 1 8.b even 2 1
4275.2.a.b 1 15.d odd 2 1
6897.2.a.f 1 11.b odd 2 1
8379.2.a.p 1 21.c even 2 1
9633.2.a.o 1 13.b even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(57))$$:

 $$T_{2} + 2$$ T2 + 2 $$T_{5} + 3$$ T5 + 3

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T + 2$$
$3$ $$T + 1$$
$5$ $$T + 3$$
$7$ $$T + 5$$
$11$ $$T - 1$$
$13$ $$T - 2$$
$17$ $$T + 1$$
$19$ $$T + 1$$
$23$ $$T + 4$$
$29$ $$T + 2$$
$31$ $$T + 6$$
$37$ $$T$$
$41$ $$T$$
$43$ $$T + 1$$
$47$ $$T + 9$$
$53$ $$T - 10$$
$59$ $$T + 8$$
$61$ $$T + 1$$
$67$ $$T - 8$$
$71$ $$T + 12$$
$73$ $$T + 11$$
$79$ $$T - 16$$
$83$ $$T - 12$$
$89$ $$T + 6$$
$97$ $$T + 10$$