Properties

Label 8T22
Order \(32\)
n \(8\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes
Group: $C_2^3 : D_4 $

Related objects

Learn more about

Group action invariants

Degree $n$ :  $8$
Transitive number $t$ :  $22$
Group :  $C_2^3 : D_4 $
CHM label :  $E(8):D_{4}=[2^{3}]2^{2}$
Parity:  $1$
Primitive:  No
Generators:  (1,3)(2,8)(4,6)(5,7), (2,3)(6,7), (2,3)(4,5), (1,8)(2,3)(4,5)(6,7), (1,5)(2,6)(3,7)(4,8)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $V_4$ x 35
8:  $C_2^3$ x 15
16:  $C_2^4$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $V_4$

Low degree siblings

8T22 x 5, 16T23 x 9, 32T9

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 1, 1, 1, 1 $ $2$ $2$ $(4,5)(6,7)$
$ 2, 2, 1, 1, 1, 1 $ $2$ $2$ $(2,3)(6,7)$
$ 2, 2, 1, 1, 1, 1 $ $2$ $2$ $(2,3)(4,5)$
$ 2, 2, 2, 2 $ $2$ $2$ $(1,2)(3,8)(4,6)(5,7)$
$ 2, 2, 2, 2 $ $2$ $2$ $(1,2)(3,8)(4,7)(5,6)$
$ 4, 4 $ $2$ $4$ $(1,2,8,3)(4,6,5,7)$
$ 4, 4 $ $2$ $4$ $(1,2,8,3)(4,7,5,6)$
$ 2, 2, 2, 2 $ $2$ $2$ $(1,4)(2,6)(3,7)(5,8)$
$ 4, 4 $ $2$ $4$ $(1,4,8,5)(2,6,3,7)$
$ 2, 2, 2, 2 $ $2$ $2$ $(1,4)(2,7)(3,6)(5,8)$
$ 4, 4 $ $2$ $4$ $(1,4,8,5)(2,7,3,6)$
$ 2, 2, 2, 2 $ $2$ $2$ $(1,6)(2,4)(3,5)(7,8)$
$ 4, 4 $ $2$ $4$ $(1,6,8,7)(2,4,3,5)$
$ 4, 4 $ $2$ $4$ $(1,6,8,7)(2,5,3,4)$
$ 2, 2, 2, 2 $ $2$ $2$ $(1,6)(2,5)(3,4)(7,8)$
$ 2, 2, 2, 2 $ $1$ $2$ $(1,8)(2,3)(4,5)(6,7)$

Group invariants

Order:  $32=2^{5}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [32, 49]
Character table:   
      2  5  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  5

        1a 2a 2b 2c 2d 2e 4a 4b 2f 4c 2g 4d 2h 4e 4f 2i 2j
     2P 1a 1a 1a 1a 1a 1a 2j 2j 1a 2j 1a 2j 1a 2j 2j 1a 1a
     3P 1a 2a 2b 2c 2d 2e 4a 4b 2f 4c 2g 4d 2h 4e 4f 2i 2j

X.1      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
X.2      1 -1 -1  1 -1  1  1 -1 -1  1  1 -1  1 -1 -1  1  1
X.3      1 -1 -1  1 -1  1  1 -1  1 -1 -1  1 -1  1  1 -1  1
X.4      1 -1 -1  1  1 -1 -1  1 -1  1  1 -1 -1  1  1 -1  1
X.5      1 -1 -1  1  1 -1 -1  1  1 -1 -1  1  1 -1 -1  1  1
X.6      1 -1  1 -1 -1  1 -1  1 -1  1 -1  1  1 -1  1 -1  1
X.7      1 -1  1 -1 -1  1 -1  1  1 -1  1 -1 -1  1 -1  1  1
X.8      1 -1  1 -1  1 -1  1 -1 -1  1 -1  1 -1  1 -1  1  1
X.9      1 -1  1 -1  1 -1  1 -1  1 -1  1 -1  1 -1  1 -1  1
X.10     1  1 -1 -1 -1 -1  1  1 -1 -1  1  1  1  1 -1 -1  1
X.11     1  1 -1 -1 -1 -1  1  1  1  1 -1 -1 -1 -1  1  1  1
X.12     1  1 -1 -1  1  1 -1 -1 -1 -1  1  1 -1 -1  1  1  1
X.13     1  1 -1 -1  1  1 -1 -1  1  1 -1 -1  1  1 -1 -1  1
X.14     1  1  1  1 -1 -1 -1 -1 -1 -1 -1 -1  1  1  1  1  1
X.15     1  1  1  1 -1 -1 -1 -1  1  1  1  1 -1 -1 -1 -1  1
X.16     1  1  1  1  1  1  1  1 -1 -1 -1 -1 -1 -1 -1 -1  1
X.17     4  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . -4