Show commands: Magma
Group invariants
Abstract group: | $Q_8:C_2^2$ |
| |
Order: | $32=2^{5}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $2$ |
|
Group action invariants
Degree $n$: | $8$ |
| |
Transitive number $t$: | $22$ |
| |
CHM label: | $E(8):D_{4}=[2^{3}]2^{2}$ | ||
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,3)(2,8)(4,6)(5,7)$, $(2,3)(6,7)$, $(2,3)(4,5)$, $(1,8)(2,3)(4,5)(6,7)$, $(1,5)(2,6)(3,7)(4,8)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 15 $4$: $C_2^2$ x 35 $8$: $C_2^3$ x 15 $16$: $C_2^4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Low degree siblings
8T22 x 5, 16T23 x 9, 32T9Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{4}$ | $1$ | $2$ | $4$ | $(1,8)(2,3)(4,5)(6,7)$ |
2B | $2^{4}$ | $2$ | $2$ | $4$ | $(1,6)(2,4)(3,5)(7,8)$ |
2C | $2^{4}$ | $2$ | $2$ | $4$ | $(1,5)(2,7)(3,6)(4,8)$ |
2D | $2^{4}$ | $2$ | $2$ | $4$ | $(1,3)(2,8)(4,7)(5,6)$ |
2E | $2^{2},1^{4}$ | $2$ | $2$ | $2$ | $(2,3)(4,5)$ |
2F | $2^{4}$ | $2$ | $2$ | $4$ | $(1,6)(2,5)(3,4)(7,8)$ |
2G | $2^{2},1^{4}$ | $2$ | $2$ | $2$ | $(1,8)(4,5)$ |
2H | $2^{4}$ | $2$ | $2$ | $4$ | $(1,4)(2,7)(3,6)(5,8)$ |
2I | $2^{2},1^{4}$ | $2$ | $2$ | $2$ | $(1,8)(2,3)$ |
2J | $2^{4}$ | $2$ | $2$ | $4$ | $(1,2)(3,8)(4,7)(5,6)$ |
4A | $4^{2}$ | $2$ | $4$ | $6$ | $(1,4,8,5)(2,7,3,6)$ |
4B | $4^{2}$ | $2$ | $4$ | $6$ | $(1,2,8,3)(4,7,5,6)$ |
4C | $4^{2}$ | $2$ | $4$ | $6$ | $(1,6,8,7)(2,5,3,4)$ |
4D | $4^{2}$ | $2$ | $4$ | $6$ | $(1,3,8,2)(4,7,5,6)$ |
4E | $4^{2}$ | $2$ | $4$ | $6$ | $(1,6,8,7)(2,4,3,5)$ |
4F | $4^{2}$ | $2$ | $4$ | $6$ | $(1,5,8,4)(2,7,3,6)$ |
Malle's constant $a(G)$: $1/2$
Character table
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 4A | 4B | 4C | 4D | 4E | 4F | ||
Size | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | 2A | 2A | |
Type | ||||||||||||||||||
32.49.1a | R | |||||||||||||||||
32.49.1b | R | |||||||||||||||||
32.49.1c | R | |||||||||||||||||
32.49.1d | R | |||||||||||||||||
32.49.1e | R | |||||||||||||||||
32.49.1f | R | |||||||||||||||||
32.49.1g | R | |||||||||||||||||
32.49.1h | R | |||||||||||||||||
32.49.1i | R | |||||||||||||||||
32.49.1j | R | |||||||||||||||||
32.49.1k | R | |||||||||||||||||
32.49.1l | R | |||||||||||||||||
32.49.1m | R | |||||||||||||||||
32.49.1n | R | |||||||||||||||||
32.49.1o | R | |||||||||||||||||
32.49.1p | R | |||||||||||||||||
32.49.4a | R |
Regular extensions
$f_{ 1 } =$ |
$x^{8} + \left(t^{2} - 5\right) x^{6} + \left(-t^{2} + 9\right) x^{4} - 8 x^{2} + 4$
|