Results: (displaying all 50 matches)

Label Name Order Parity Solvable Subfields Low Degree Siblings
8T1 $C_8$ 8 -1 Yes 2T1, 4T1
8T2 $C_4\times C_2$ 8 1 Yes 2T1, 2T1, 2T1, 4T1, 4T1, 4T2
8T3 $C_2^3$ 8 1 Yes 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2
8T4 $D_4$ 8 1 Yes 2T1, 2T1, 2T1, 4T2, 4T3, 4T3 4T3a, 4T3b
8T5 $Q_8$ 8 1 Yes 2T1, 2T1, 2T1, 4T2
8T6 $D_8$ 16 -1 Yes 2T1, 4T3 8T6b, 16T13
8T7 $C_8:C_2$ 16 -1 Yes 2T1, 4T1 16T6
8T8 $QD_{16}$ 16 -1 Yes 2T1, 4T3 16T12
8T9 $D_4\times C_2$ 16 1 Yes 2T1, 2T1, 2T1, 4T2, 4T3, 4T3 8T9b, 8T9c, 8T9d, 16T9
8T10 $C_2^2:C_4$ 16 1 Yes 2T1, 4T1, 4T3, 4T3 8T10b, 16T10
8T11 $Q_8:C_2$ 16 1 Yes 2T1, 2T1, 2T1, 4T2 8T11b, 8T11c, 16T11
8T12 $\SL(2,3)$ 24 1 Yes 4T4
8T13 $A_4\times C_2$ 24 1 Yes 2T1, 4T4 6T6, 12T6, 12T7
8T14 $S_4$ 24 1 Yes 2T1, 4T5 4T5, 6T7, 6T8, 12T8, 12T9
8T15 $Z_8 : Z_8^\times$ 32 -1 Yes 2T1, 4T3 8T15b, 16T35, 16T38a, 16T38b, 16T45
8T16 $(C_8:C_2):C_2$ 32 -1 Yes 2T1, 4T1 8T16b, 16T36, 16T41a, 16T41b
8T17 $C_4\wr C_2$ 32 -1 Yes 2T1, 4T3 8T17b, 16T28, 16T42
8T18 $V_4 \wr C_2 $ 32 1 Yes 2T1, 4T3, 4T3, 4T3 8T18b, 8T18c, 8T18d, 8T18e, 8T18f, 8T18g, 8T18h, 16T39a, 16T39b, 16T39c, 16T39d, 16T39e, 16T39f, 16T46
8T19 $C_2^3 : C_4 $ 32 1 Yes 2T1, 4T3 8T19b, 8T20, 8T21, 16T33a, 16T33b, 16T52, 16T53
8T20 $C_2^3: C_4$ 32 1 Yes 2T1, 4T1 8T19a, 8T19b, 8T21, 16T33a, 16T33b, 16T52, 16T53
8T21 $C_2^3: C_4$ 32 -1 Yes 2T1, 2T1, 2T1, 4T2 8T19a, 8T19b, 8T20, 16T33a, 16T33b, 16T52, 16T53
8T22 $C_2^3 : D_4 $ 32 1 Yes 2T1, 2T1, 2T1, 4T2 8T22b, 8T22c, 8T22d, 8T22e, 8T22f, 16T23a, 16T23b, 16T23c, 16T23d, 16T23e, 16T23f, 16T23g, 16T23h, 16T23i
8T23 $\textrm{GL(2,3)}$ 48 -1 Yes 4T5 8T23b, 16T66
8T24 $S_4\times C_2$ 48 1 Yes 2T1, 4T5 6T11a, 6T11b, 8T24b, 12T21, 12T22, 12T23a, 12T23b, 12T24a, 12T24b, 16T61
8T25 $C_2^3:C_7$ 56 1 Yes 14T6
8T26 64 -1 Yes 2T1, 4T3 8T26b, 8T26c, 8T26d, 16T135a, 16T135b, 16T141a, 16T141b, 16T142a, 16T142b, 16T152a, 16T152b
8T27 64 -1 Yes 2T1, 4T1 8T27b, 8T28a, 8T28b, 16T130, 16T157a, 16T157b, 16T158a, 16T158b, 16T159a, 16T159b, 16T166, 16T170, 16T171, 16T172
8T28 64 -1 Yes 2T1, 4T3 8T27a, 8T27b, 8T28b, 16T130, 16T157a, 16T157b, 16T158a, 16T158b, 16T159a, 16T159b, 16T166, 16T170, 16T171, 16T172
8T29 64 1 Yes 2T1, 4T3 8T29b, 8T29c, 8T29d, 8T29e, 8T29f, 8T31a, 8T31b, 16T127, 16T128a, 16T128b, 16T128c, 16T129a, 16T129b, 16T129c, 16T147, 16T149a, 16T149b, 16T149c, 16T149d, 16T149e, 16T149f, 16T150a, 16T150b, 16T150c
8T30 64 -1 Yes 2T1, 4T3 8T30b, 8T30c, 8T30d, 16T143a, 16T143b, 16T167a, 16T167b, 16T168a, 16T168b, 16T169a, 16T169b
8T31 64 -1 Yes 2T1, 2T1, 2T1, 4T2 8T29a, 8T29b, 8T29c, 8T29d, 8T29e, 8T29f, 8T31b, 16T127, 16T128a, 16T128b, 16T128c, 16T129a, 16T129b, 16T129c, 16T147, 16T149a, 16T149b, 16T149c, 16T149d, 16T149e, 16T149f, 16T150a, 16T150b, 16T150c
8T32 96 1 Yes 4T4 8T32b, 8T32c
8T33 $C_2^4:C_6$ 96 1 Yes 2T1 8T33b, 12T58a, 12T58b, 12T59a, 12T59b, 16T183
8T34 $V_4^2:S_3$ 96 1 Yes 2T1 12T66a, 12T66b, 12T66c, 12T67, 12T68a, 12T68b, 12T68c, 12T69, 16T194
8T35 $C_2 \wr C_2\wr C_2$ 128 -1 Yes 2T1, 4T3 8T35b, 8T35c, 8T35d, 8T35e, 8T35f, 8T35g, 8T35h, 16T376a, 16T376b, 16T376c, 16T376d, 16T388a, 16T388b, 16T388c, 16T388d, 16T390a, 16T390b, 16T390c, 16T390d, 16T391a, 16T391b, 16T391c, 16T391d, 16T393a, 16T393b, 16T393c, 16T393d, 16T395a, 16T395b, 16T395c, 16T395d, 16T396a, 16T396b, 16T396c, 16T396d, 16T401a, 16T401b, 16T401c, 16T401d
8T36 $C_2^3:(C_7: C_3)$ 168 1 Yes 14T11
8T37 $\PSL(2,7)$ 168 1 No 7T5a, 7T5b, 14T10a, 14T10b, 21T14
8T38 $C_2\wr A_4$ 192 -1 Yes 4T4 8T38b, 16T425, 16T427
8T39 $C_2^3:S_4$ 192 1 Yes 4T5 8T39b, 8T39c, 8T39d, 8T39e, 8T39f, 16T442a, 16T442b, 16T442c
8T40 $Q_8:S_4$ 192 -1 Yes 4T5 8T40b, 16T444, 16T445
8T41 $V_4^2:(S_3\times C_2)$ 192 1 Yes 2T1 8T41b, 12T108a, 12T108b, 12T109a, 12T109b, 12T110a, 12T110b, 12T111a, 12T111b, 16T435a, 16T435b, 16T436
8T42 $A_4\wr C_2$ 288 1 Yes 2T1 12T126, 12T128, 12T129, 16T708, 18T112, 18T113
8T43 $\PGL(2,7)$ 336 -1 No 14T16, 16T713, 21T20
8T44 $C_2 \wr S_4$ 384 -1 Yes 4T5 8T44b, 8T44c, 8T44d, 16T736a, 16T736b, 16T743a, 16T743b, 16T748a, 16T748b, 16T752a, 16T752b
8T45 $(A_4\wr C_2):C_2$ 576 1 Yes 2T1 12T161, 12T163, 12T165a, 12T165b, 16T1032, 16T1034, 18T179, 18T180, 18T185a, 18T185b
8T46 $A_4^2:C_4$ 576 -1 Yes 2T1 12T160, 12T162, 16T1030, 16T1031, 18T182, 18T184
8T47 $S_4\wr C_2$ 1152 -1 Yes 2T1 12T200, 12T201, 12T202, 12T203, 16T1292, 16T1294, 16T1295, 16T1296, 18T272, 18T273, 18T274, 18T275
8T48 $C_2^3:\GL(3,2)$ 1344 1 No 8T48b, 14T34a, 14T34b
8T49 $A_8$ 20160 1 No 15T72a, 15T72b
8T50 $S_8$ 40320 -1 No 16T1838