Properties

Label 5.5.38569.1-17.1-b6
Base field 5.5.38569.1
Conductor norm \( 17 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.38569.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} + 4 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 4, 0, -5, 0, 1]))
 
gp: K = nfinit(Polrev([-1, 4, 0, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 4, 0, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}+a^{3}-4a^{2}-3a+1\right){x}{y}+\left(a^{4}+a^{3}-4a^{2}-3a+1\right){y}={x}^{3}+{x}^{2}+\left(-40a^{4}-90a^{3}+5a^{2}+35a-5\right){x}-702a^{4}-1511a^{3}+317a^{2}+1054a-261\)
sage: E = EllipticCurve([K([1,-3,-4,1,1]),K([1,0,0,0,0]),K([1,-3,-4,1,1]),K([-5,35,5,-90,-40]),K([-261,1054,317,-1511,-702])])
 
gp: E = ellinit([Polrev([1,-3,-4,1,1]),Polrev([1,0,0,0,0]),Polrev([1,-3,-4,1,1]),Polrev([-5,35,5,-90,-40]),Polrev([-261,1054,317,-1511,-702])], K);
 
magma: E := EllipticCurve([K![1,-3,-4,1,1],K![1,0,0,0,0],K![1,-3,-4,1,1],K![-5,35,5,-90,-40],K![-261,1054,317,-1511,-702]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-\frac{7}{2} a^{4} - \frac{15}{4} a^{3} + \frac{53}{4} a^{2} + 10 a - \frac{25}{4} : -\frac{7}{4} a^{4} + \frac{3}{8} a^{3} + \frac{27}{2} a^{2} + \frac{73}{8} a - \frac{29}{8} : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((a^3-3a-1)\) = \((a^3-3a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 17 \) = \(17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $5a^4+4a^3-21a^2-12a+1$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((5a^4+4a^3-21a^2-12a+1)\) = \((a^3-3a-1)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 83521 \) = \(17^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{191010208049176061567432964418935750417}{83521} a^{4} + \frac{389373409648192880822797404169052473649}{83521} a^{3} - \frac{161315178223120659347331199752509351188}{83521} a^{2} - \frac{328840231180583481626805905878816700787}{83521} a + \frac{93701569431652774399214957840089814633}{83521} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 3.7310507290234964362871298029418305363 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 4 \)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(2\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.21588343 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 64 \) (rounded)

BSD formula

$\displaystyle 1.215883430 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 64 \cdot 3.731051 \cdot 1 \cdot 4 } { {2^2 \cdot 196.389918} } \approx 1.215883426$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is semistable. There is only one prime $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((a^3-3a-1)\) \(17\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 17.1-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.