Properties

Label 5.5.24217.1-83.2-a1
Base field 5.5.24217.1
Conductor norm \( 83 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.24217.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} - x^{2} + 3 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 3, -1, -5, 0, 1]))
 
gp: K = nfinit(Polrev([1, 3, -1, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -1, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-a^{3}-4a^{2}+4a+1\right){x}{y}+\left(3a^{4}-a^{3}-14a^{2}+3a+5\right){y}={x}^{3}+\left(2a^{4}-10a^{2}-a+3\right){x}^{2}+\left(3a^{4}-3a^{3}-13a^{2}+10a+8\right){x}+a^{4}-5a^{2}\)
sage: E = EllipticCurve([K([1,4,-4,-1,1]),K([3,-1,-10,0,2]),K([5,3,-14,-1,3]),K([8,10,-13,-3,3]),K([0,0,-5,0,1])])
 
gp: E = ellinit([Polrev([1,4,-4,-1,1]),Polrev([3,-1,-10,0,2]),Polrev([5,3,-14,-1,3]),Polrev([8,10,-13,-3,3]),Polrev([0,0,-5,0,1])], K);
 
magma: E := EllipticCurve([K![1,4,-4,-1,1],K![3,-1,-10,0,2],K![5,3,-14,-1,3],K![8,10,-13,-3,3],K![0,0,-5,0,1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-a^{4} + 5 a^{2} - 1 : -4 a^{4} + 3 a^{3} + 18 a^{2} - 9 a - 7 : 1\right)$$0.041991250033772752417019026107153514009$$\infty$

Invariants

Conductor: $\frak{N}$ = \((-2a^4+2a^3+10a^2-7a-6)\) = \((-2a^4+2a^3+10a^2-7a-6)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 83 \) = \(83\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-4a^4-a^3+20a^2+5a-12$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-4a^4-a^3+20a^2+5a-12)\) = \((-2a^4+2a^3+10a^2-7a-6)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( -6889 \) = \(-83^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( -\frac{3205321}{6889} a^{4} + \frac{3829196}{6889} a^{3} + \frac{15699250}{6889} a^{2} - \frac{11133632}{6889} a - \frac{5984717}{6889} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 0.041991250033772752417019026107153514009 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 0.2099562501688637620850951305357675700450 \)
Global period: $\Omega(E/K)$ \( 716.32093152596644402316946834904174696 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 2 \)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(1\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.93288615 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 1.932886150 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 716.320932 \cdot 0.209956 \cdot 2 } { {1^2 \cdot 155.618122} } \approx 1.932886150$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is semistable. There is only one prime $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-2a^4+2a^3+10a^2-7a-6)\) \(83\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 83.2-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.