Properties

Label 5.5.14641.1-197.5-b1
Base field \(\Q(\zeta_{11})^+\)
Conductor norm \( 197 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{11})^+\)

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 3, 3, -4, -1, 1]))
 
gp: K = nfinit(Polrev([-1, 3, 3, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 3, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}+a^{3}-4a^{2}-2a+3\right){x}{y}+{y}={x}^{3}+\left(-a^{4}-a^{3}+4a^{2}+2a-1\right){x}^{2}+\left(-a^{4}-2a^{3}+6a^{2}+5a-3\right){x}-2a^{4}-a^{3}+8a^{2}+4a-2\)
sage: E = EllipticCurve([K([3,-2,-4,1,1]),K([-1,2,4,-1,-1]),K([1,0,0,0,0]),K([-3,5,6,-2,-1]),K([-2,4,8,-1,-2])])
 
gp: E = ellinit([Polrev([3,-2,-4,1,1]),Polrev([-1,2,4,-1,-1]),Polrev([1,0,0,0,0]),Polrev([-3,5,6,-2,-1]),Polrev([-2,4,8,-1,-2])], K);
 
magma: E := EllipticCurve([K![3,-2,-4,1,1],K![-1,2,4,-1,-1],K![1,0,0,0,0],K![-3,5,6,-2,-1],K![-2,4,8,-1,-2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3+a^2-2a-4)\) = \((a^3+a^2-2a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 197 \) = \(197\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^3-a^2+2a+4)\) = \((a^3+a^2-2a-4)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -197 \) = \(-197\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{140773808}{197} a^{4} - \frac{137463815}{197} a^{3} + \frac{304701804}{197} a^{2} + \frac{197064106}{197} a - \frac{57712701}{197} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-2 a^{4} - a^{3} + 7 a^{2} + 5 a - 2 : -9 a^{4} - 2 a^{3} + 32 a^{2} + 14 a - 7 : 1\right)$
Height \(0.0023159026446406168429623965156684912785\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0023159026446406168429623965156684912785 \)
Period: \( 20534.484963399258356903057287201379916 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 1.96511851 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3+a^2-2a-4)\) \(197\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 197.5-b consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.