Properties

Label 4.4.9909.1-15.1-a2
Base field 4.4.9909.1
Conductor norm \( 15 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.9909.1

Generator \(a\), with minimal polynomial \( x^{4} - 6 x^{2} - 3 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -3, -6, 0, 1]))
 
gp: K = nfinit(Polrev([3, -3, -6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -3, -6, 0, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(a^{2}-2\right){y}={x}^{3}+\left(a^{3}-a^{2}-3a+2\right){x}^{2}+\left(-3a^{3}-29a^{2}+39a+86\right){x}-53a^{3}+71a^{2}+190a+33\)
sage: E = EllipticCurve([K([0,1,0,0]),K([2,-3,-1,1]),K([-2,0,1,0]),K([86,39,-29,-3]),K([33,190,71,-53])])
 
gp: E = ellinit([Polrev([0,1,0,0]),Polrev([2,-3,-1,1]),Polrev([-2,0,1,0]),Polrev([86,39,-29,-3]),Polrev([33,190,71,-53])], K);
 
magma: E := EllipticCurve([K![0,1,0,0],K![2,-3,-1,1],K![-2,0,1,0],K![86,39,-29,-3],K![33,190,71,-53]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-a^2-5a)\) = \((-a^3+a^2+4a)\cdot(-a^3+2a^2+3a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 15 \) = \(3\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-1785a^3+6615a^2+5274a-11184)\) = \((-a^3+a^2+4a)^{4}\cdot(-a^3+2a^2+3a-4)^{20}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 7724761962890625 \) = \(3^{4}\cdot5^{20}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{51150296581786130426003}{286102294921875} a^{3} + \frac{32230691277422593955829}{95367431640625} a^{2} + \frac{24823185420593409932434}{57220458984375} a - \frac{81174148800215168575921}{286102294921875} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a^{3} + \frac{3}{4} a^{2} + a - 2 : -\frac{3}{8} a^{3} + 2 a^{2} + \frac{5}{2} a - \frac{1}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 122.34799530436607043532582846565205285 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 1.22908507090213 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+a^2+4a)\) \(3\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\((-a^3+2a^2+3a-4)\) \(5\) \(2\) \(I_{20}\) Non-split multiplicative \(1\) \(1\) \(20\) \(20\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 15.1-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.