Properties

Label 4.4.2777.1-704.3-n7
Base field 4.4.2777.1
Conductor norm \( 704 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.2777.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 1, -4, -1, 1]))
 
gp: K = nfinit(Polrev([2, 1, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 1, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(a^{3}-a^{2}-3a+2\right){y}={x}^{3}+\left(-a^{2}+3\right){x}^{2}+\left(-27a^{3}-40a^{2}+15a+22\right){x}-238a^{3}-327a^{2}+177a+194\)
sage: E = EllipticCurve([K([0,1,0,0]),K([3,0,-1,0]),K([2,-3,-1,1]),K([22,15,-40,-27]),K([194,177,-327,-238])])
 
gp: E = ellinit([Polrev([0,1,0,0]),Polrev([3,0,-1,0]),Polrev([2,-3,-1,1]),Polrev([22,15,-40,-27]),Polrev([194,177,-327,-238])], K);
 
magma: E := EllipticCurve([K![0,1,0,0],K![3,0,-1,0],K![2,-3,-1,1],K![22,15,-40,-27],K![194,177,-327,-238]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+5a^2-a-6)\) = \((-a)^{6}\cdot(-a^3+2a^2+2a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 704 \) = \(2^{6}\cdot11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((41a^3-202a^2+183a+726)\) = \((-a)^{28}\cdot(-a^3+2a^2+2a-1)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 32480690176 \) = \(2^{28}\cdot11^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{189687996477}{123904} a^{3} + \frac{252879329025}{123904} a^{2} - \frac{75995630703}{61952} a - \frac{153356764887}{123904} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-\frac{5}{4} a^{2} - 2 a - 1 : \frac{1}{8} a^{3} + \frac{3}{2} a^{2} + 2 a - 1 : 1\right)$ $\left(a^{3} + 2 a^{2} + a : -2 a^{3} - 2 a^{2} + 2 a : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 178.47309929899570526031355222966814389 \)
Tamagawa product: \( 8 \)  =  \(2^{2}\cdot2\)
Torsion order: \(4\)
Leading coefficient: \( 1.69338157458058 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(2\) \(4\) \(I_{18}^{*}\) Additive \(1\) \(6\) \(28\) \(10\)
\((-a^3+2a^2+2a-1)\) \(11\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(5\) 5B.4.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 704.3-n consists of curves linked by isogenies of degrees dividing 20.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.