Label |
$p$ |
$n$ |
$n_0$ |
$n_{\mathrm{abs}}$ |
$f$ |
$f_0$ |
$f_{\mathrm{abs}}$ |
$e$ |
$e_0$ |
$e_{\mathrm{abs}}$ |
$c$ |
$c_0$ |
$c_{\mathrm{abs}}$ |
Base |
Abs. Artin slopes |
Swan slopes |
Means |
Rams |
Generic poly |
Ambiguity |
Field count |
Mass |
Mass (absolute) |
Mass stored |
Mass found |
Wild segments |
2.8.4.80a |
$2$ |
$32$ |
$1$ |
$32$ |
$8$ |
$1$ |
$8$ |
$4$ |
$1$ |
$4$ |
$80$ |
$0$ |
$80$ |
$\Q_{2}$ |
$[3, \frac{7}{2}]$ |
$[2, \frac{5}{2}]$ |
$\langle1, \frac{7}{4}\rangle$ |
$(2, 3)$ |
$x^4 + 4 a_{7} x^3 + (4 b_{6} + 8 c_{10}) x^2 + 8 b_{9} x + 8 c_{8} + 2$ |
$32$ |
$0$ |
$16711680$ |
$2088960$ |
$0$ |
$0\%$ |
$2$ |
2.2.1.0a1.1-4.4.40a |
$2$ |
$16$ |
$2$ |
$32$ |
$4$ |
$2$ |
$8$ |
$4$ |
$1$ |
$4$ |
$40$ |
$0$ |
$40$ |
$\Q_{2}(\sqrt{5})$ |
$[3, \frac{7}{2}]$ |
$[2, \frac{5}{2}]$ |
$\langle1, \frac{7}{4}\rangle$ |
$(2, 3)$ |
$x^4 + 4 a_{7} x^3 + (4 b_{6} + 8 c_{10}) x^2 + 8 b_{9} x + 8 c_{8} + 2$ |
$16$ |
$0$ |
$16711680$ |
$2088960$ |
$0$ |
$0\%$ |
$2$ |
2.1.2.3a1.1-8.2.32a |
$2$ |
$16$ |
$2$ |
$32$ |
$8$ |
$1$ |
$8$ |
$2$ |
$2$ |
$4$ |
$32$ |
$3$ |
$48$ |
$\Q_{2}(\sqrt{-2})$ |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$16$ |
$0$ |
$65280$ |
$4080$ |
$0$ |
$0\%$ |
$1$ |
2.1.2.3a1.2-8.2.32a |
$2$ |
$16$ |
$2$ |
$32$ |
$8$ |
$1$ |
$8$ |
$2$ |
$2$ |
$4$ |
$32$ |
$3$ |
$48$ |
$\Q_{2}(\sqrt{-2\cdot 5})$ |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$16$ |
$0$ |
$65280$ |
$4080$ |
$0$ |
$0\%$ |
$1$ |
2.1.2.3a1.3-8.2.32a |
$2$ |
$16$ |
$2$ |
$32$ |
$8$ |
$1$ |
$8$ |
$2$ |
$2$ |
$4$ |
$32$ |
$3$ |
$48$ |
$\Q_{2}(\sqrt{2})$ |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$16$ |
$0$ |
$65280$ |
$4080$ |
$0$ |
$0\%$ |
$1$ |
2.1.2.3a1.4-8.2.32a |
$2$ |
$16$ |
$2$ |
$32$ |
$8$ |
$1$ |
$8$ |
$2$ |
$2$ |
$4$ |
$32$ |
$3$ |
$48$ |
$\Q_{2}(\sqrt{2\cdot 5})$ |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$16$ |
$0$ |
$65280$ |
$4080$ |
$0$ |
$0\%$ |
$1$ |
2.4.1.0a1.1-2.4.20a |
$2$ |
$8$ |
$4$ |
$32$ |
$2$ |
$4$ |
$8$ |
$4$ |
$1$ |
$4$ |
$20$ |
$0$ |
$20$ |
2.4.1.0a1.1 |
$[3, \frac{7}{2}]$ |
$[2, \frac{5}{2}]$ |
$\langle1, \frac{7}{4}\rangle$ |
$(2, 3)$ |
$x^4 + 4 a_{7} x^3 + (4 b_{6} + 8 c_{10}) x^2 + 8 b_{9} x + 8 c_{8} + 2$ |
$8$ |
$0$ |
$16711680$ |
$2088960$ |
$0$ |
$0\%$ |
$2$ |
2.2.2.6a1.1-4.2.16a |
$2$ |
$8$ |
$4$ |
$32$ |
$4$ |
$2$ |
$8$ |
$2$ |
$2$ |
$4$ |
$16$ |
$6$ |
$24$ |
2.2.2.6a1.1 |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$8$ |
$0$ |
$65280$ |
$4080$ |
$0$ |
$0\%$ |
$1$ |
2.2.2.6a1.2-4.2.16a |
$2$ |
$8$ |
$4$ |
$32$ |
$4$ |
$2$ |
$8$ |
$2$ |
$2$ |
$4$ |
$16$ |
$6$ |
$24$ |
2.2.2.6a1.2 |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$8$ |
$0$ |
$65280$ |
$4080$ |
$0$ |
$0\%$ |
$1$ |
2.2.2.6a1.3-4.2.16a |
$2$ |
$8$ |
$4$ |
$32$ |
$4$ |
$2$ |
$8$ |
$2$ |
$2$ |
$4$ |
$16$ |
$6$ |
$24$ |
2.2.2.6a1.3 |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$8$ |
$0$ |
$65280$ |
$8160$ |
$0$ |
$0\%$ |
$1$ |
2.2.2.6a1.4-4.2.16a |
$2$ |
$8$ |
$4$ |
$32$ |
$4$ |
$2$ |
$8$ |
$2$ |
$2$ |
$4$ |
$16$ |
$6$ |
$24$ |
2.2.2.6a1.4 |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$8$ |
$0$ |
$65280$ |
$8160$ |
$0$ |
$0\%$ |
$1$ |
2.2.2.6a1.5-4.2.16a |
$2$ |
$8$ |
$4$ |
$32$ |
$4$ |
$2$ |
$8$ |
$2$ |
$2$ |
$4$ |
$16$ |
$6$ |
$24$ |
2.2.2.6a1.5 |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$8$ |
$0$ |
$65280$ |
$4080$ |
$0$ |
$0\%$ |
$1$ |
2.2.2.6a1.6-4.2.16a |
$2$ |
$8$ |
$4$ |
$32$ |
$4$ |
$2$ |
$8$ |
$2$ |
$2$ |
$4$ |
$16$ |
$6$ |
$24$ |
2.2.2.6a1.6 |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$8$ |
$0$ |
$65280$ |
$4080$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.10a1.1-8.1.0a |
$2$ |
$8$ |
$4$ |
$32$ |
$8$ |
$1$ |
$8$ |
$1$ |
$4$ |
$4$ |
$0$ |
$10$ |
$56$ |
2.1.4.10a1.1 |
$[3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$8$ |
$0$ |
$1$ |
$1/16$ |
$0$ |
$0\%$ |
$0$ |
2.1.4.10a1.2-8.1.0a |
$2$ |
$8$ |
$4$ |
$32$ |
$8$ |
$1$ |
$8$ |
$1$ |
$4$ |
$4$ |
$0$ |
$10$ |
$56$ |
2.1.4.10a1.2 |
$[3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$8$ |
$0$ |
$1$ |
$1/16$ |
$0$ |
$0\%$ |
$0$ |
2.1.4.10a1.3-8.1.0a |
$2$ |
$8$ |
$4$ |
$32$ |
$8$ |
$1$ |
$8$ |
$1$ |
$4$ |
$4$ |
$0$ |
$10$ |
$56$ |
2.1.4.10a1.3 |
$[3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$8$ |
$0$ |
$1$ |
$1/16$ |
$0$ |
$0\%$ |
$0$ |
2.1.4.10a1.4-8.1.0a |
$2$ |
$8$ |
$4$ |
$32$ |
$8$ |
$1$ |
$8$ |
$1$ |
$4$ |
$4$ |
$0$ |
$10$ |
$56$ |
2.1.4.10a1.4 |
$[3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$8$ |
$0$ |
$1$ |
$1/16$ |
$0$ |
$0\%$ |
$0$ |
2.1.4.10a1.5-8.1.0a |
$2$ |
$8$ |
$4$ |
$32$ |
$8$ |
$1$ |
$8$ |
$1$ |
$4$ |
$4$ |
$0$ |
$10$ |
$56$ |
2.1.4.10a1.5 |
$[3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$8$ |
$0$ |
$1$ |
$1/16$ |
$0$ |
$0\%$ |
$0$ |
2.1.4.10a1.6-8.1.0a |
$2$ |
$8$ |
$4$ |
$32$ |
$8$ |
$1$ |
$8$ |
$1$ |
$4$ |
$4$ |
$0$ |
$10$ |
$56$ |
2.1.4.10a1.6 |
$[3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$8$ |
$0$ |
$1$ |
$1/16$ |
$0$ |
$0\%$ |
$0$ |
2.1.4.10a1.7-8.1.0a |
$2$ |
$8$ |
$4$ |
$32$ |
$8$ |
$1$ |
$8$ |
$1$ |
$4$ |
$4$ |
$0$ |
$10$ |
$56$ |
2.1.4.10a1.7 |
$[3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$8$ |
$0$ |
$1$ |
$1/16$ |
$0$ |
$0\%$ |
$0$ |
2.1.4.10a1.8-8.1.0a |
$2$ |
$8$ |
$4$ |
$32$ |
$8$ |
$1$ |
$8$ |
$1$ |
$4$ |
$4$ |
$0$ |
$10$ |
$56$ |
2.1.4.10a1.8 |
$[3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$8$ |
$0$ |
$1$ |
$1/16$ |
$0$ |
$0\%$ |
$0$ |
2.8.1.0a1.1-1.4.10a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$8$ |
$8$ |
$4$ |
$1$ |
$4$ |
$10$ |
$0$ |
$10$ |
2.8.1.0a1.1 |
$[3, \frac{7}{2}]$ |
$[2, \frac{5}{2}]$ |
$\langle1, \frac{7}{4}\rangle$ |
$(2, 3)$ |
$x^4 + 4 a_{7} x^3 + (4 b_{6} + 8 c_{10}) x^2 + 8 b_{9} x + 8 c_{8} + 2$ |
$4$ |
$0$ |
$16711680$ |
$2088960$ |
$0$ |
$0\%$ |
$2$ |
2.4.2.12a1.1-2.2.8a |
$2$ |
$4$ |
$8$ |
$32$ |
$2$ |
$4$ |
$8$ |
$2$ |
$2$ |
$4$ |
$8$ |
$12$ |
$12$ |
2.4.2.12a1.1 |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$4$ |
$0$ |
$65280$ |
$4080$ |
$0$ |
$0\%$ |
$1$ |
2.4.2.12a1.2-2.2.8a |
$2$ |
$4$ |
$8$ |
$32$ |
$2$ |
$4$ |
$8$ |
$2$ |
$2$ |
$4$ |
$8$ |
$12$ |
$12$ |
2.4.2.12a1.2 |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$4$ |
$0$ |
$65280$ |
$4080$ |
$0$ |
$0\%$ |
$1$ |
2.4.2.12a1.3-2.2.8a |
$2$ |
$4$ |
$8$ |
$32$ |
$2$ |
$4$ |
$8$ |
$2$ |
$2$ |
$4$ |
$8$ |
$12$ |
$12$ |
2.4.2.12a1.3 |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$4$ |
$0$ |
$65280$ |
$16320$ |
$0$ |
$0\%$ |
$1$ |
2.4.2.12a1.4-2.2.8a |
$2$ |
$4$ |
$8$ |
$32$ |
$2$ |
$4$ |
$8$ |
$2$ |
$2$ |
$4$ |
$8$ |
$12$ |
$12$ |
2.4.2.12a1.4 |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$4$ |
$0$ |
$65280$ |
$16320$ |
$0$ |
$0\%$ |
$1$ |
2.4.2.12a1.5-2.2.8a |
$2$ |
$4$ |
$8$ |
$32$ |
$2$ |
$4$ |
$8$ |
$2$ |
$2$ |
$4$ |
$8$ |
$12$ |
$12$ |
2.4.2.12a1.5 |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$4$ |
$0$ |
$65280$ |
$16320$ |
$0$ |
$0\%$ |
$1$ |
2.4.2.12a1.6-2.2.8a |
$2$ |
$4$ |
$8$ |
$32$ |
$2$ |
$4$ |
$8$ |
$2$ |
$2$ |
$4$ |
$8$ |
$12$ |
$12$ |
2.4.2.12a1.6 |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$4$ |
$0$ |
$65280$ |
$16320$ |
$0$ |
$0\%$ |
$1$ |
2.4.2.12a1.7-2.2.8a |
$2$ |
$4$ |
$8$ |
$32$ |
$2$ |
$4$ |
$8$ |
$2$ |
$2$ |
$4$ |
$8$ |
$12$ |
$12$ |
2.4.2.12a1.7 |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$4$ |
$0$ |
$65280$ |
$8160$ |
$0$ |
$0\%$ |
$1$ |
2.4.2.12a1.8-2.2.8a |
$2$ |
$4$ |
$8$ |
$32$ |
$2$ |
$4$ |
$8$ |
$2$ |
$2$ |
$4$ |
$8$ |
$12$ |
$12$ |
2.4.2.12a1.8 |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$4$ |
$0$ |
$65280$ |
$8160$ |
$0$ |
$0\%$ |
$1$ |
2.4.2.12a1.9-2.2.8a |
$2$ |
$4$ |
$8$ |
$32$ |
$2$ |
$4$ |
$8$ |
$2$ |
$2$ |
$4$ |
$8$ |
$12$ |
$12$ |
2.4.2.12a1.9 |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$4$ |
$0$ |
$65280$ |
$4080$ |
$0$ |
$0\%$ |
$1$ |
2.4.2.12a1.10-2.2.8a |
$2$ |
$4$ |
$8$ |
$32$ |
$2$ |
$4$ |
$8$ |
$2$ |
$2$ |
$4$ |
$8$ |
$12$ |
$12$ |
2.4.2.12a1.10 |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$4$ |
$0$ |
$65280$ |
$4080$ |
$0$ |
$0\%$ |
$1$ |
2.4.2.12a1.11-2.2.8a |
$2$ |
$4$ |
$8$ |
$32$ |
$2$ |
$4$ |
$8$ |
$2$ |
$2$ |
$4$ |
$8$ |
$12$ |
$12$ |
2.4.2.12a1.11 |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$4$ |
$0$ |
$65280$ |
$16320$ |
$0$ |
$0\%$ |
$1$ |
2.4.2.12a1.12-2.2.8a |
$2$ |
$4$ |
$8$ |
$32$ |
$2$ |
$4$ |
$8$ |
$2$ |
$2$ |
$4$ |
$8$ |
$12$ |
$12$ |
2.4.2.12a1.12 |
$[3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$4$ |
$0$ |
$65280$ |
$16320$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.20a1.1-4.1.0a |
$2$ |
$4$ |
$8$ |
$32$ |
$4$ |
$2$ |
$8$ |
$1$ |
$4$ |
$4$ |
$0$ |
$20$ |
$28$ |
2.2.4.20a1.1 |
$[3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$0$ |
$1$ |
$1/16$ |
$0$ |
$0\%$ |
$0$ |
2.2.4.20a1.2-4.1.0a |
$2$ |
$4$ |
$8$ |
$32$ |
$4$ |
$2$ |
$8$ |
$1$ |
$4$ |
$4$ |
$0$ |
$20$ |
$28$ |
2.2.4.20a1.2 |
$[3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$0$ |
$1$ |
$1/16$ |
$0$ |
$0\%$ |
$0$ |
2.2.4.20a1.3-4.1.0a |
$2$ |
$4$ |
$8$ |
$32$ |
$4$ |
$2$ |
$8$ |
$1$ |
$4$ |
$4$ |
$0$ |
$20$ |
$28$ |
2.2.4.20a1.3 |
$[3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$0$ |
$1$ |
$1/16$ |
$0$ |
$0\%$ |
$0$ |
2.2.4.20a1.4-4.1.0a |
$2$ |
$4$ |
$8$ |
$32$ |
$4$ |
$2$ |
$8$ |
$1$ |
$4$ |
$4$ |
$0$ |
$20$ |
$28$ |
2.2.4.20a1.4 |
$[3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$0$ |
$1$ |
$1/16$ |
$0$ |
$0\%$ |
$0$ |
2.2.4.20a1.5-4.1.0a |
$2$ |
$4$ |
$8$ |
$32$ |
$4$ |
$2$ |
$8$ |
$1$ |
$4$ |
$4$ |
$0$ |
$20$ |
$28$ |
2.2.4.20a1.5 |
$[3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$0$ |
$1$ |
$1/8$ |
$0$ |
$0\%$ |
$0$ |
2.2.4.20a1.6-4.1.0a |
$2$ |
$4$ |
$8$ |
$32$ |
$4$ |
$2$ |
$8$ |
$1$ |
$4$ |
$4$ |
$0$ |
$20$ |
$28$ |
2.2.4.20a1.6 |
$[3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$0$ |
$1$ |
$1/8$ |
$0$ |
$0\%$ |
$0$ |
2.2.4.20a1.7-4.1.0a |
$2$ |
$4$ |
$8$ |
$32$ |
$4$ |
$2$ |
$8$ |
$1$ |
$4$ |
$4$ |
$0$ |
$20$ |
$28$ |
2.2.4.20a1.7 |
$[3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$0$ |
$1$ |
$1/8$ |
$0$ |
$0\%$ |
$0$ |
2.2.4.20a1.8-4.1.0a |
$2$ |
$4$ |
$8$ |
$32$ |
$4$ |
$2$ |
$8$ |
$1$ |
$4$ |
$4$ |
$0$ |
$20$ |
$28$ |
2.2.4.20a1.8 |
$[3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$0$ |
$1$ |
$1/8$ |
$0$ |
$0\%$ |
$0$ |
2.2.4.20a1.9-4.1.0a |
$2$ |
$4$ |
$8$ |
$32$ |
$4$ |
$2$ |
$8$ |
$1$ |
$4$ |
$4$ |
$0$ |
$20$ |
$28$ |
2.2.4.20a1.9 |
$[3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$0$ |
$1$ |
$1/8$ |
$0$ |
$0\%$ |
$0$ |
2.2.4.20a1.10-4.1.0a |
$2$ |
$4$ |
$8$ |
$32$ |
$4$ |
$2$ |
$8$ |
$1$ |
$4$ |
$4$ |
$0$ |
$20$ |
$28$ |
2.2.4.20a1.10 |
$[3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$0$ |
$1$ |
$1/8$ |
$0$ |
$0\%$ |
$0$ |
2.2.4.20a1.11-4.1.0a |
$2$ |
$4$ |
$8$ |
$32$ |
$4$ |
$2$ |
$8$ |
$1$ |
$4$ |
$4$ |
$0$ |
$20$ |
$28$ |
2.2.4.20a1.11 |
$[3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$0$ |
$1$ |
$1/8$ |
$0$ |
$0\%$ |
$0$ |
2.2.4.20a1.12-4.1.0a |
$2$ |
$4$ |
$8$ |
$32$ |
$4$ |
$2$ |
$8$ |
$1$ |
$4$ |
$4$ |
$0$ |
$20$ |
$28$ |
2.2.4.20a1.12 |
$[3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$0$ |
$1$ |
$1/8$ |
$0$ |
$0\%$ |
$0$ |
2.2.4.20a1.13-4.1.0a |
$2$ |
$4$ |
$8$ |
$32$ |
$4$ |
$2$ |
$8$ |
$1$ |
$4$ |
$4$ |
$0$ |
$20$ |
$28$ |
2.2.4.20a1.13 |
$[3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$0$ |
$1$ |
$1/16$ |
$0$ |
$0\%$ |
$0$ |
2.2.4.20a1.14-4.1.0a |
$2$ |
$4$ |
$8$ |
$32$ |
$4$ |
$2$ |
$8$ |
$1$ |
$4$ |
$4$ |
$0$ |
$20$ |
$28$ |
2.2.4.20a1.14 |
$[3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$0$ |
$1$ |
$1/16$ |
$0$ |
$0\%$ |
$0$ |
2.2.4.20a1.15-4.1.0a |
$2$ |
$4$ |
$8$ |
$32$ |
$4$ |
$2$ |
$8$ |
$1$ |
$4$ |
$4$ |
$0$ |
$20$ |
$28$ |
2.2.4.20a1.15 |
$[3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$0$ |
$1$ |
$1/16$ |
$0$ |
$0\%$ |
$0$ |
2.2.4.20a1.16-4.1.0a |
$2$ |
$4$ |
$8$ |
$32$ |
$4$ |
$2$ |
$8$ |
$1$ |
$4$ |
$4$ |
$0$ |
$20$ |
$28$ |
2.2.4.20a1.16 |
$[3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$0$ |
$1$ |
$1/16$ |
$0$ |
$0\%$ |
$0$ |