Defining polynomial over unramified subextension
$x^{4} + 4 a_{7} x^{3} + \left(4 b_{6} + 8 c_{10}\right) x^{2} + 8 b_{9} x + 8 c_{8} + 2$ |
Invariants
Residue field characteristic: | $2$ |
Degree: | $32$ |
Base field: | $\Q_{2}$ |
Ramification index $e$: | $4$ |
Residue field degree $f$: | $8$ |
Discriminant exponent $c$: | $80$ |
Artin slopes: | $[3,\frac{7}{2}]$ |
Swan slopes: | $[2,\frac{5}{2}]$ |
Means: | $\langle1,\frac{7}{4}\rangle$ |
Rams: | $(2,3)$ |
Field count: | $0$ (incomplete) |
Ambiguity: | $32$ |
Mass: | $16711680$ |
Absolute Mass: | $2088960$ ($0$ currently in the LMFDB) |
Diagrams
The LMFDB does not contain any fields from this family.