Properties

Label 2.1.4.10a1.5
Base \(\Q_{2}\)
Degree \(4\)
e \(4\)
f \(1\)
c \(10\)
Galois group $D_{4}$ (as 4T3)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{4} + 4 x^{3} + 4 x^{2} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $4$
Ramification index $e$: $4$
Residue field degree $f$: $1$
Discriminant exponent $c$: $10$
Discriminant root field: $\Q_{2}(\sqrt{-5})$
Root number: $i$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3, \frac{7}{2}]$
Visible Swan slopes:$[2,\frac{5}{2}]$
Means:$\langle1, \frac{7}{4}\rangle$
Rams:$(2, 3)$
Jump set:$[1, 3, 7]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{-2})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{4} + 4 x^{3} + 4 x^{2} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{2} + 1$,$z + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[7, 4, 0]$

Invariants of the Galois closure

Galois degree: $8$
Galois group: $D_4$ (as 4T3)
Inertia group: $D_4$ (as 4T3)
Wild inertia group: $D_4$
Galois unramified degree: $1$
Galois tame degree: $1$
Galois Artin slopes: $[2, 3, \frac{7}{2}]$
Galois Swan slopes: $[1,2,\frac{5}{2}]$
Galois mean slope: $2.75$
Galois splitting model:$x^{4} - 2 x^{2} + 3$