Defining polynomial
\(x^{4} + 4 x^{3} + 4 x^{2} + 2\)
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $4$ |
Ramification index $e$: | $4$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $10$ |
Discriminant root field: | $\Q_{2}(\sqrt{-5})$ |
Root number: | $i$ |
$\Aut(K/\Q_{2})$: | $C_2$ |
This field is not Galois over $\Q_{2}.$ | |
Visible Artin slopes: | $[3, \frac{7}{2}]$ |
Visible Swan slopes: | $[2,\frac{5}{2}]$ |
Means: | $\langle1, \frac{7}{4}\rangle$ |
Rams: | $(2, 3)$ |
Jump set: | $[1, 3, 7]$ |
Roots of unity: | $2$ |
Intermediate fields
$\Q_{2}(\sqrt{-2})$ |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: |
\( x^{4} + 4 x^{3} + 4 x^{2} + 2 \)
|
Ramification polygon
Residual polynomials: | $z^{2} + 1$,$z + 1$ |
Associated inertia: | $1$,$1$ |
Indices of inseparability: | $[7, 4, 0]$ |
Invariants of the Galois closure
Galois degree: | $8$ |
Galois group: | $D_4$ (as 4T3) |
Inertia group: | $D_4$ (as 4T3) |
Wild inertia group: | $D_4$ |
Galois unramified degree: | $1$ |
Galois tame degree: | $1$ |
Galois Artin slopes: | $[2, 3, \frac{7}{2}]$ |
Galois Swan slopes: | $[1,2,\frac{5}{2}]$ |
Galois mean slope: | $2.75$ |
Galois splitting model: | $x^{4} - 2 x^{2} + 3$ |