Properties

Label 5.2.9.16a1.2
Base \(\Q_{5}\)
Degree \(18\)
e \(9\)
f \(2\)
c \(16\)
Galois group $C_9:C_6$ (as 18T18)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 4 x + 2 )^{9} + 5$ Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $18$
Ramification index $e$: $9$
Residue field degree $f$: $2$
Discriminant exponent $c$: $16$
Discriminant root field: $\Q_{5}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{5})$: $S_3$
This field is not Galois over $\Q_{5}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$24 = (5^{ 2 } - 1)$

Intermediate fields

$\Q_{5}(\sqrt{2})$, 5.1.3.2a1.1 x3, 5.2.3.4a1.2, 5.1.9.8a1.1 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{5}(\sqrt{2})$ $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{2} + 4 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{9} + 5 \) $\ \in\Q_{5}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + 4 z^7 + z^6 + 4 z^5 + z^4 + z^3 + 4 z^2 + z + 4$
Associated inertia:$3$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $54$
Galois group: $C_9:C_6$ (as 18T18)
Inertia group: Intransitive group isomorphic to $C_9$
Wild inertia group: $C_1$
Galois unramified degree: $6$
Galois tame degree: $9$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.8888888888888888$
Galois splitting model:not computed