Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $18$ | |
| Group : | $D_9:C_3$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10), (1,15,7,9,13,3)(2,16,8,10,14,4)(5,6)(11,18)(12,17) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $S_3$, $C_6$ 18: $S_3\times C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 6: $S_3$
Degree 9: $(C_9:C_3):C_2$
Low degree siblings
9T10Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $3$ | $3$ | $( 3, 9,15)( 4,10,16)( 5,17,11)( 6,18,12)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $3$ | $3$ | $( 3,15, 9)( 4,16,10)( 5,11,17)( 6,12,18)$ |
| $ 6, 6, 2, 2, 2 $ | $9$ | $6$ | $( 1, 2)( 3, 5, 9,17,15,11)( 4, 6,10,18,16,12)( 7,14)( 8,13)$ |
| $ 6, 6, 2, 2, 2 $ | $9$ | $6$ | $( 1, 2)( 3,11,15,17, 9, 5)( 4,12,16,18,10, 6)( 7,14)( 8,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 2)( 3,17)( 4,18)( 5,15)( 6,16)( 7,14)( 8,13)( 9,11)(10,12)$ |
| $ 9, 9 $ | $6$ | $9$ | $( 1, 4, 5, 7,10,11,13,16,17)( 2, 3, 6, 8, 9,12,14,15,18)$ |
| $ 9, 9 $ | $6$ | $9$ | $( 1, 4,11, 7,10,17,13,16, 5)( 2, 3,12, 8, 9,18,14,15, 6)$ |
| $ 9, 9 $ | $6$ | $9$ | $( 1, 4,17, 7,10, 5,13,16,11)( 2, 3,18, 8, 9, 6,14,15,12)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 7,13)( 2, 8,14)( 3, 9,15)( 4,10,16)( 5,11,17)( 6,12,18)$ |
Group invariants
| Order: | $54=2 \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [54, 6] |
| Character table: |
2 1 1 1 1 1 1 . . . .
3 3 2 2 1 1 1 2 2 2 3
1a 3a 3b 6a 6b 2a 9a 9b 9c 3c
2P 1a 3b 3a 3a 3b 1a 9a 9c 9b 3c
3P 1a 1a 1a 2a 2a 2a 3c 3c 3c 1a
5P 1a 3b 3a 6b 6a 2a 9a 9c 9b 3c
7P 1a 3a 3b 6a 6b 2a 9a 9b 9c 3c
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 -1 -1 -1 1 1 1 1
X.3 1 A /A -/A -A -1 1 A /A 1
X.4 1 /A A -A -/A -1 1 /A A 1
X.5 1 A /A /A A 1 1 A /A 1
X.6 1 /A A A /A 1 1 /A A 1
X.7 2 2 2 . . . -1 -1 -1 2
X.8 2 B /B . . . -1 -/A -A 2
X.9 2 /B B . . . -1 -A -/A 2
X.10 6 . . . . . . . . -3
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 2*E(3)
= -1+Sqrt(-3) = 2b3
|