Defining polynomial over unramified subextension
$x^{9} + 5d_{0}$ |
Invariants
Residue field characteristic: | $5$ |
Degree: | $18$ |
Base field: | $\Q_{5}$ |
Ramification index $e$: | $9$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $16$ |
Artin slopes: | $[\ ]$ |
Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Field count: | $2$ (complete) |
Ambiguity: | $6$ |
Mass: | $1$ |
Absolute Mass: | $1/2$ |
Varying
Indices of inseparability: | $[0]$ |
Associated inertia: | $[3]$ |
Jump Set: | undefined |
Galois groups and Hidden Artin slopes
Select desired size of Galois group.
Fields
Showing all 2
Download displayed columns for resultsLabel | Polynomial | Galois group | Galois degree | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes | Ind. of Insep. | Assoc. Inertia | Jump Set |
---|---|---|---|---|---|---|---|---|
5.2.9.16a1.1 | $( x^{2} + 4 x + 2 )^{9} + 5 x$ | $C_9:C_{18}$ (as 18T80) | $162$ | $3$ | $[\ ]^{9}$ | $[0]$ | $[3]$ | undefined |
5.2.9.16a1.2 | $( x^{2} + 4 x + 2 )^{9} + 5$ | $C_9:C_6$ (as 18T18) | $54$ | $6$ | $[\ ]^{3}$ | $[0]$ | $[3]$ | undefined |