Properties

Label 5.2.9.16a
Base 5.1.1.0a1.1
Degree \(18\)
e \(9\)
f \(2\)
c \(16\)

Related objects

Downloads

Learn more

Defining polynomial over unramified subextension

$x^{9} + 5d_{0}$

Invariants

Residue field characteristic: $5$
Degree: $18$
Base field: $\Q_{5}$
Ramification index $e$: $9$
Residue field degree $f$: $2$
Discriminant exponent $c$: $16$
Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $2$ (complete)
Ambiguity: $6$
Mass: $1$
Absolute Mass: $1/2$

Varying

Indices of inseparability: $[0]$
Associated inertia: $[3]$
Jump Set: undefined

Galois groups and Hidden Artin slopes

Select desired size of Galois group.

Fields


Showing all 2

  displayed columns for results
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
5.2.9.16a1.1 $( x^{2} + 4 x + 2 )^{9} + 5 x$ $C_9:C_{18}$ (as 18T80) $162$ $3$ $[\ ]_{9}^{18}$ $[\ ]_{9}^{18}$ $[\ ]^{9}$ $[\ ]^{9}$ $[0]$ $[3]$ $z^8 + 4 z^7 + z^6 + 4 z^5 + z^4 + z^3 + 4 z^2 + z + 4$ undefined
5.2.9.16a1.2 $( x^{2} + 4 x + 2 )^{9} + 5$ $C_9:C_6$ (as 18T18) $54$ $6$ $[\ ]_{9}^{6}$ $[\ ]_{9}^{6}$ $[\ ]^{3}$ $[\ ]^{3}$ $[0]$ $[3]$ $z^8 + 4 z^7 + z^6 + 4 z^5 + z^4 + z^3 + 4 z^2 + z + 4$ undefined
  displayed columns for results