Properties

Label 13.1.8.7a1.2
Base \(\Q_{13}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(7\)
Galois group $C_8:C_2$ (as 8T7)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 26\) Copy content Toggle raw display

Invariants

Base field: $\Q_{13}$
Degree $d$: $8$
Ramification index $e$: $8$
Residue field degree $f$: $1$
Discriminant exponent $c$: $7$
Discriminant root field: $\Q_{13}(\sqrt{13\cdot 2})$
Root number: $-1$
$\Aut(K/\Q_{13})$: $C_4$
This field is not Galois over $\Q_{13}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$12 = (13 - 1)$

Intermediate fields

$\Q_{13}(\sqrt{13\cdot 2})$, 13.1.4.3a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{13}$
Relative Eisenstein polynomial: \( x^{8} + 26 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^7 + 8 z^6 + 2 z^5 + 4 z^4 + 5 z^3 + 4 z^2 + 2 z + 8$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $16$
Galois group: $\OD_{16}$ (as 8T7)
Inertia group: $C_8$ (as 8T1)
Wild inertia group: $C_1$
Galois unramified degree: $2$
Galois tame degree: $8$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.875$
Galois splitting model:$x^{8} - 3 x^{7} + 8 x^{6} - 71 x^{5} + 275 x^{4} - 466 x^{3} + 648 x^{2} - 608 x + 256$