Properties

Label 13.1.8.7a
Base 13.1.1.0a1.1
Degree \(8\)
e \(8\)
f \(1\)
c \(7\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{8} + 13d_{0}$

Invariants

Residue field characteristic: $13$
Degree: $8$
Base field: $\Q_{13}$
Ramification index $e$: $8$
Residue field degree $f$: $1$
Discriminant exponent $c$: $7$
Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $4$ (complete)
Ambiguity: $4$
Mass: $1$
Absolute Mass: $1$

Varying

Indices of inseparability: $[0]$
Associated inertia: $[2]$
Jump Set: undefined

Galois groups and Hidden Artin slopes

Fields


Showing all 4

  displayed columns for results
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
13.1.8.7a1.1 $x^{8} + 13$ $C_8:C_2$ (as 8T7) $16$ $4$ $[\ ]_{8}^{2}$ $[\ ]_{8}^{2}$ $[\ ]^{2}$ $[\ ]^{2}$ $[0]$ $[2]$ $z^7 + 8 z^6 + 2 z^5 + 4 z^4 + 5 z^3 + 4 z^2 + 2 z + 8$ undefined
13.1.8.7a1.2 $x^{8} + 26$ $C_8:C_2$ (as 8T7) $16$ $4$ $[\ ]_{8}^{2}$ $[\ ]_{8}^{2}$ $[\ ]^{2}$ $[\ ]^{2}$ $[0]$ $[2]$ $z^7 + 8 z^6 + 2 z^5 + 4 z^4 + 5 z^3 + 4 z^2 + 2 z + 8$ undefined
13.1.8.7a1.3 $x^{8} + 52$ $C_8:C_2$ (as 8T7) $16$ $4$ $[\ ]_{8}^{2}$ $[\ ]_{8}^{2}$ $[\ ]^{2}$ $[\ ]^{2}$ $[0]$ $[2]$ $z^7 + 8 z^6 + 2 z^5 + 4 z^4 + 5 z^3 + 4 z^2 + 2 z + 8$ undefined
13.1.8.7a1.4 $x^{8} + 104$ $C_8:C_2$ (as 8T7) $16$ $4$ $[\ ]_{8}^{2}$ $[\ ]_{8}^{2}$ $[\ ]^{2}$ $[\ ]^{2}$ $[0]$ $[2]$ $z^7 + 8 z^6 + 2 z^5 + 4 z^4 + 5 z^3 + 4 z^2 + 2 z + 8$ undefined
  displayed columns for results