Defining polynomial
|
\(x^{8} + 13\)
|
Invariants
| Base field: | $\Q_{13}$ |
| Degree $d$: | $8$ |
| Ramification index $e$: | $8$ |
| Residue field degree $f$: | $1$ |
| Discriminant exponent $c$: | $7$ |
| Discriminant root field: | $\Q_{13}(\sqrt{13})$ |
| Root number: | $1$ |
| $\Aut(K/\Q_{13})$: | $C_4$ |
| This field is not Galois over $\Q_{13}.$ | |
| Visible Artin slopes: | $[\ ]$ |
| Visible Swan slopes: | $[\ ]$ |
| Means: | $\langle\ \rangle$ |
| Rams: | $(\ )$ |
| Jump set: | undefined |
| Roots of unity: | $12 = (13 - 1)$ |
Intermediate fields
| $\Q_{13}(\sqrt{13})$, 13.1.4.3a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
| Unramified subfield: | $\Q_{13}$ |
| Relative Eisenstein polynomial: |
\( x^{8} + 13 \)
|
Ramification polygon
| Residual polynomials: | $z^7 + 8 z^6 + 2 z^5 + 4 z^4 + 5 z^3 + 4 z^2 + 2 z + 8$ |
| Associated inertia: | $2$ |
| Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
| Galois degree: | $16$ |
| Galois group: | $\OD_{16}$ (as 8T7) |
| Inertia group: | $C_8$ (as 8T1) |
| Wild inertia group: | $C_1$ |
| Galois unramified degree: | $2$ |
| Galois tame degree: | $8$ |
| Galois Artin slopes: | $[\ ]$ |
| Galois Swan slopes: | $[\ ]$ |
| Galois mean slope: | $0.875$ |
| Galois splitting model: | $x^{8} + 26 x^{6} + 65 x^{4} + 52 x^{2} + 13$ |