Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
1.4.ae |
$1$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$( 1 - 2 x )^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$1$ |
$[1, 9, 49, 225, 961, 3969, 16129, 65025, 261121, 1046529]$ |
$1$ |
$[1, 9, 49, 225, 961, 3969, 16129, 65025, 261121, 1046529]$ |
$1$ |
$1$ |
$5$ |
$6$ |
$1$ |
\(\Q\) |
Trivial |
simple |
1.4.ad |
$1$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 4 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$2$ |
$[2, 16, 74, 288, 1082, 4144, 16298, 65088, 261146, 1047376]$ |
$2$ |
$[2, 16, 74, 288, 1082, 4144, 16298, 65088, 261146, 1047376]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
1.4.ac |
$1$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 - 2 x + 4 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$3$ |
$[3, 21, 81, 273, 993, 3969, 16257, 65793, 263169, 1049601]$ |
$3$ |
$[3, 21, 81, 273, 993, 3969, 16257, 65793, 263169, 1049601]$ |
$2$ |
$2$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.4.ab |
$1$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 4 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$4$ |
$[4, 24, 76, 240, 964, 4104, 16636, 65760, 261364, 1046904]$ |
$4$ |
$[4, 24, 76, 240, 964, 4104, 16636, 65760, 261364, 1046904]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-15}) \) |
$C_2$ |
simple |
1.4.a |
$1$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$1 + 4 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$5$ |
$[5, 25, 65, 225, 1025, 4225, 16385, 65025, 262145, 1050625]$ |
$5$ |
$[5, 25, 65, 225, 1025, 4225, 16385, 65025, 262145, 1050625]$ |
$1$ |
$1$ |
$5$ |
$12$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
1.4.b |
$1$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 4 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$6$ |
$[6, 24, 54, 240, 1086, 4104, 16134, 65760, 262926, 1046904]$ |
$6$ |
$[6, 24, 54, 240, 1086, 4104, 16134, 65760, 262926, 1046904]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-15}) \) |
$C_2$ |
simple |
1.4.c |
$1$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 2 x + 4 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$7$ |
$[7, 21, 49, 273, 1057, 3969, 16513, 65793, 261121, 1049601]$ |
$7$ |
$[7, 21, 49, 273, 1057, 3969, 16513, 65793, 261121, 1049601]$ |
$2$ |
$2$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.4.d |
$1$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
|
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 4 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$8$ |
$[8, 16, 56, 288, 968, 4144, 16472, 65088, 263144, 1047376]$ |
$8$ |
$[8, 16, 56, 288, 968, 4144, 16472, 65088, 263144, 1047376]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
1.4.e |
$1$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$( 1 + 2 x )^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$9$ |
$[9, 9, 81, 225, 1089, 3969, 16641, 65025, 263169, 1046529]$ |
$9$ |
$[9, 9, 81, 225, 1089, 3969, 16641, 65025, 263169, 1046529]$ |
$1$ |
$1$ |
$5$ |
$6$ |
$1$ |
\(\Q\) |
Trivial |
simple |
2.4.ai_y |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
|
|
|
✓ |
✓ |
|
$( 1 - 2 x )^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$-3$ |
$[-3, 1, 33, 193, 897, 3841, 15873, 64513, 260097, 1044481]$ |
$1$ |
$[1, 81, 2401, 50625, 923521, 15752961, 260144641, 4228250625, 68184176641, 1095222947841]$ |
$0$ |
$0$ |
$19$ |
$12$ |
$1$ |
\(\Q\) |
Trivial |
1.4.ae 2 |
2.4.ah_u |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
✓ |
|
✓ |
|
$( 1 - 2 x )^{2}( 1 - 3 x + 4 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$-2$ |
$[-2, 8, 58, 256, 1018, 4016, 16042, 64576, 260122, 1045328]$ |
$2$ |
$[2, 144, 3626, 64800, 1039802, 16447536, 262870442, 4232347200, 68190704666, 1096109357904]$ |
$0$ |
$0$ |
$10$ |
$6$ |
$1$ |
\(\Q\), \(\Q(\sqrt{-7}) \) |
Trivial, $C_2$ |
1.4.ae $\times$ 1.4.ad |
2.4.ag_q |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 2 x )^{2}( 1 - 2 x + 4 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$-1$ |
$[-1, 13, 65, 241, 929, 3841, 16001, 65281, 262145, 1047553]$ |
$3$ |
$[3, 189, 3969, 61425, 954273, 15752961, 262209153, 4278189825, 68718952449, 1098437884929]$ |
$0$ |
$0$ |
$19$ |
$30$ |
$6$ |
\(\Q\), \(\Q(\sqrt{-3}) \) |
Trivial, $C_2$ |
1.4.ae $\times$ 1.4.ac |
2.4.ag_r |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
|
✓ |
|
|
✓ |
|
$( 1 - 3 x + 4 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$-1$ |
$[-1, 15, 83, 319, 1139, 4191, 16211, 64639, 260147, 1046175]$ |
$4$ |
$[4, 256, 5476, 82944, 1170724, 17172736, 265624804, 4236447744, 68197233316, 1096996485376]$ |
$0$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
1.4.ad 2 |
2.4.af_m |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
✓ |
|
✓ |
|
$( 1 - 2 x )^{2}( 1 - x + 4 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$0$ |
$[0, 16, 60, 208, 900, 3976, 16380, 65248, 260340, 1044856]$ |
$4$ |
$[4, 216, 3724, 54000, 926404, 16288776, 268322044, 4276044000, 68247629044, 1095615396216]$ |
$0$ |
$0$ |
$10$ |
$6$ |
$1$ |
\(\Q\), \(\Q(\sqrt{-15}) \) |
Trivial, $C_2$ |
1.4.ae $\times$ 1.4.ab |
2.4.af_n |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 13 x^{2} - 20 x^{3} + 16 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$0$ |
$[0, 18, 75, 258, 1000, 4143, 16800, 66498, 262875, 1047298]$ |
$5$ |
$[5, 275, 4820, 66275, 1022625, 16966400, 275308745, 4358310275, 68911390580, 1098171421875]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.1025.1 |
$D_{4}$ |
simple |
2.4.af_o |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
✓ |
|
✓ |
|
$( 1 - 3 x + 4 x^{2} )( 1 - 2 x + 4 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$0$ |
$[0, 20, 90, 304, 1050, 4016, 16170, 65344, 262170, 1048400]$ |
$6$ |
$[6, 336, 5994, 78624, 1074426, 16447536, 264956586, 4282334784, 68725531674, 1099326896976]$ |
$0$ |
$0$ |
$10$ |
$12$ |
$3$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.4.ad $\times$ 1.4.ac |
2.4.ae_i |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 - 2 x )^{2}( 1 + 4 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$1$ |
$[1, 17, 49, 193, 961, 4097, 16129, 64513, 261121, 1048577]$ |
$5$ |
$[5, 225, 3185, 50625, 985025, 16769025, 264273665, 4228250625, 68451564545, 1099509530625]$ |
$1$ |
$1$ |
$19$ |
$20$ |
$4$ |
\(\Q\), \(\Q(\sqrt{-1}) \) |
Trivial, $C_2$ |
1.4.ae $\times$ 1.4.a |
2.4.ae_j |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 9 x^{2} - 16 x^{3} + 16 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$1$ |
$[1, 19, 61, 223, 1021, 4291, 16717, 65599, 262573, 1051939]$ |
$6$ |
$[6, 276, 3942, 57408, 1046166, 17589204, 273933078, 4298940672, 68831612838, 1103041860756]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.4752.1 |
$D_{4}$ |
simple |
2.4.ae_l |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 3 x + 4 x^{2} )( 1 - x + 4 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$1$ |
$[1, 23, 85, 271, 1021, 4151, 16549, 65311, 260365, 1045703]$ |
$8$ |
$[8, 384, 5624, 69120, 1043048, 17006976, 271133528, 4280186880, 68254163144, 1096502123904]$ |
$2$ |
$2$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-15}) \) |
$C_2$, $C_2$ |
1.4.ad $\times$ 1.4.ab |
2.4.ae_m |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
|
|
|
✓ |
✓ |
✓ |
$( 1 - 2 x + 4 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$1$ |
$[1, 25, 97, 289, 961, 3841, 16129, 66049, 264193, 1050625]$ |
$9$ |
$[9, 441, 6561, 74529, 986049, 15752961, 264290049, 4328718849, 69257922561, 1101662259201]$ |
$1$ |
$1$ |
$19$ |
$30$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
1.4.ac 2 |
2.4.ad_e |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
✓ |
|
✓ |
|
$( 1 - 2 x )^{2}( 1 + x + 4 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$2$ |
$[2, 16, 38, 208, 1022, 3976, 15878, 65248, 261902, 1044856]$ |
$6$ |
$[6, 216, 2646, 54000, 1043646, 16288776, 260225286, 4276044000, 68655500046, 1095615396216]$ |
$0$ |
$0$ |
$10$ |
$6$ |
$1$ |
\(\Q\), \(\Q(\sqrt{-15}) \) |
Trivial, $C_2$ |
1.4.ae $\times$ 1.4.b |
2.4.ad_f |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
|
|
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 5 x^{2} - 12 x^{3} + 16 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$2$ |
$[2, 18, 47, 226, 1082, 4191, 16298, 65986, 264143, 1049778]$ |
$7$ |
$[7, 259, 3136, 58275, 1109227, 17172736, 267001147, 4324529475, 69244764736, 1100771362579]$ |
$2$ |
$2$ |
$6$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}, \sqrt{-7})\) |
$C_2^2$ |
simple |
2.4.ad_g |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
|
✓ |
✓ |
$1 - 3 x + 6 x^{2} - 12 x^{3} + 16 x^{4}$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$2$ |
$0$ |
$2$ |
$[2, 20, 56, 240, 1112, 4304, 16424, 65728, 263576, 1048880]$ |
$8$ |
$[8, 304, 3656, 61408, 1141688, 17643856, 269053352, 4307525568, 69095573912, 1099831434544]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.3757.1 |
$D_{4}$ |
simple |
2.4.ad_h |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 7 x^{2} - 12 x^{3} + 16 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$2$ |
$[2, 22, 65, 250, 1112, 4327, 16382, 65074, 262145, 1048102]$ |
$9$ |
$[9, 351, 4212, 63531, 1141299, 17740944, 268402689, 4264772499, 68719584492, 1099012730751]$ |
$4$ |
$4$ |
$4$ |
$12$ |
$6$ |
\(\Q(\sqrt{-3}, \sqrt{13})\) |
$C_2^2$ |
simple |
2.4.ad_i |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
✓ |
|
✓ |
✓ |
$( 1 - 3 x + 4 x^{2} )( 1 + 4 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$2$ |
$[2, 24, 74, 256, 1082, 4272, 16298, 64576, 261146, 1049424]$ |
$10$ |
$[10, 400, 4810, 64800, 1109050, 17508400, 267042730, 4232347200, 68458118170, 1100399410000]$ |
$1$ |
$1$ |
$10$ |
$12$ |
$2$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.4.ad $\times$ 1.4.a |
2.4.ad_j |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 9 x^{2} - 12 x^{3} + 16 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$[2, 26, 83, 258, 1022, 4151, 16298, 64738, 261227, 1051106]$ |
$11$ |
$[11, 451, 5456, 65395, 1046771, 17000896, 267003671, 4242892995, 68479461776, 1102167168091]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.3625.1 |
$D_{4}$ |
simple |
2.4.ad_k |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
✓ |
|
✓ |
|
$( 1 - 2 x + 4 x^{2} )( 1 - x + 4 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$2$ |
$[2, 28, 92, 256, 932, 3976, 16508, 66016, 262388, 1047928]$ |
$12$ |
$[12, 504, 6156, 65520, 957252, 16288776, 270451452, 4326547680, 68782902516, 1098831485304]$ |
$0$ |
$0$ |
$10$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-15}) \) |
$C_2$, $C_2$ |
1.4.ac $\times$ 1.4.ab |
2.4.ac_a |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 2 x )^{2}( 1 + 2 x + 4 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$3$ |
$[3, 13, 33, 241, 993, 3841, 16257, 65281, 260097, 1047553]$ |
$7$ |
$[7, 189, 2401, 61425, 1015777, 15752961, 266338177, 4278189825, 68184176641, 1098437884929]$ |
$0$ |
$0$ |
$19$ |
$30$ |
$3$ |
\(\Q\), \(\Q(\sqrt{-3}) \) |
Trivial, $C_2$ |
1.4.ae $\times$ 1.4.c |
2.4.ac_b |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + x^{2} - 8 x^{3} + 16 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 15, 39, 255, 1063, 3999, 16551, 66303, 262119, 1050655]$ |
$8$ |
$[8, 224, 2696, 65408, 1089288, 16380896, 271193672, 4345445888, 68712350792, 1101692811744]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
4.0.1088.2 |
$D_{4}$ |
simple |
2.4.ac_d |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 3 x^{2} - 8 x^{3} + 16 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 19, 51, 271, 1143, 4147, 16467, 66271, 261879, 1045699]$ |
$10$ |
$[10, 300, 3310, 69600, 1175050, 16980300, 269783230, 4343318400, 68650283770, 1096497907500]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.32832.1 |
$D_{4}$ |
simple |
2.4.ac_e |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 - 2 x + 4 x^{2} - 8 x^{3} + 16 x^{4}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$3$ |
$[3, 21, 57, 273, 1153, 4161, 16257, 65793, 261633, 1044481]$ |
$11$ |
$[11, 341, 3641, 69905, 1185921, 17043521, 266354561, 4311810305, 68585520641, 1095222947841]$ |
$2$ |
$2$ |
$19$ |
$60$ |
$5$ |
\(\Q(\zeta_{5})\) |
$C_4$ |
simple |
2.4.ac_f |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 3 x + 4 x^{2} )( 1 + x + 4 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 23, 63, 271, 1143, 4151, 16047, 65311, 261927, 1045703]$ |
$12$ |
$[12, 384, 3996, 69120, 1175052, 17006976, 262951932, 4280186880, 68662073196, 1096502123904]$ |
$4$ |
$4$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-15}) \) |
$C_2$, $C_2$ |
1.4.ad $\times$ 1.4.b |
2.4.ac_h |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 7 x^{2} - 8 x^{3} + 16 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 27, 75, 255, 1063, 4107, 15963, 64959, 263415, 1051627]$ |
$14$ |
$[14, 476, 4802, 64736, 1089774, 16816604, 261596594, 4257298304, 69053293022, 1102713976476]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.10304.1 |
$D_{4}$ |
simple |
2.4.ac_i |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 2 x + 4 x^{2} )( 1 + 4 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$3$ |
$[3, 29, 81, 241, 993, 4097, 16257, 65281, 263169, 1051649]$ |
$15$ |
$[15, 525, 5265, 61425, 1017825, 16769025, 266370945, 4278189825, 68988437505, 1102737050625]$ |
$0$ |
$0$ |
$19$ |
$60$ |
$12$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.4.ac $\times$ 1.4.a |
2.4.ac_j |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
|
✓ |
|
|
✓ |
✓ |
$( 1 - x + 4 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$3$ |
$[3, 31, 87, 223, 903, 4111, 16887, 65983, 260583, 1045231]$ |
$16$ |
$[16, 576, 5776, 57600, 929296, 16842816, 276756496, 4324377600, 68311140496, 1096007985216]$ |
$1$ |
$1$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-15}) \) |
$C_2$ |
1.4.ab 2 |
2.4.ab_ae |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
✓ |
|
✓ |
|
$( 1 - 2 x )^{2}( 1 + 3 x + 4 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$4$ |
$[4, 8, 40, 256, 904, 4016, 16216, 64576, 262120, 1045328]$ |
$8$ |
$[8, 144, 2744, 64800, 930248, 16447536, 265676888, 4232347200, 68712424424, 1096109357904]$ |
$0$ |
$0$ |
$10$ |
$6$ |
$1$ |
\(\Q\), \(\Q(\sqrt{-7}) \) |
Trivial, $C_2$ |
1.4.ae $\times$ 1.4.d |
2.4.ab_ad |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x - 3 x^{2} - 4 x^{3} + 16 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$4$ |
$[4, 10, 43, 274, 964, 4111, 16636, 65314, 263707, 1050250]$ |
$9$ |
$[9, 171, 2916, 69939, 988749, 16842816, 272594709, 4280336739, 69130081476, 1101267647451]$ |
$1$ |
$1$ |
$6$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}, \sqrt{5})\) |
$C_2^2$ |
simple |
2.4.ab_ac |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
|
✓ |
✓ |
$1 - x - 2 x^{2} - 4 x^{3} + 16 x^{4}$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$2$ |
$0$ |
$4$ |
$[4, 12, 46, 288, 1014, 4152, 16846, 65568, 263494, 1050952]$ |
$10$ |
$[10, 200, 3070, 74000, 1038550, 17007800, 276074830, 4296884000, 69074008390, 1102005405000]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.8405.1 |
$D_{4}$ |
simple |
2.4.ab_ab |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x - x^{2} - 4 x^{3} + 16 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 14, 49, 298, 1054, 4151, 16888, 65554, 262417, 1050014]$ |
$11$ |
$[11, 231, 3212, 76923, 1079441, 16997904, 276773123, 4296072627, 68791272308, 1101020105031]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.45177.1 |
$D_{4}$ |
simple |
2.4.ab_a |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
|
✓ |
|
✓ |
✓ |
$1 - x - 4 x^{3} + 16 x^{4}$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$2$ |
$0$ |
$4$ |
$[4, 16, 52, 304, 1084, 4120, 16804, 65440, 261196, 1048936]$ |
$12$ |
$[12, 264, 3348, 78672, 1110972, 16867224, 275376036, 4288725408, 68471444556, 1099886721384]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.13068.1 |
$D_{4}$ |
simple |
2.4.ab_b |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + x^{2} - 4 x^{3} + 16 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 18, 55, 306, 1104, 4071, 16636, 65346, 260335, 1048378]$ |
$13$ |
$[13, 299, 3484, 79235, 1132573, 16667456, 272590513, 4282572515, 68246337484, 1099301402979]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.54665.1 |
$D_{4}$ |
simple |
2.4.ab_c |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
✓ |
|
✓ |
✓ |
$( 1 - 3 x + 4 x^{2} )( 1 + 2 x + 4 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$4$ |
$[4, 20, 58, 304, 1114, 4016, 16426, 65344, 260122, 1048400]$ |
$14$ |
$[14, 336, 3626, 78624, 1143674, 16447536, 269128874, 4282334784, 68190704666, 1099326896976]$ |
$2$ |
$2$ |
$10$ |
$12$ |
$3$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.4.ad $\times$ 1.4.c |
2.4.ab_d |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 3 x^{2} - 4 x^{3} + 16 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 22, 61, 298, 1114, 3967, 16216, 65458, 260629, 1048702]$ |
$15$ |
$[15, 375, 3780, 76875, 1143825, 16254000, 265693695, 4289701875, 68323148460, 1099644759375]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.46305.1 |
$D_{4}$ |
simple |
2.4.ab_e |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
|
|
✓ |
|
✓ |
✓ |
$1 - x + 4 x^{2} - 4 x^{3} + 16 x^{4}$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$2$ |
$0$ |
$4$ |
$[4, 24, 64, 288, 1104, 3936, 16048, 65664, 261712, 1048864]$ |
$16$ |
$[16, 416, 3952, 74048, 1132816, 16132064, 262967728, 4303225472, 68606478928, 1099812538656]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.2312.1 |
$D_{4}$ |
simple |
2.4.ab_f |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 5 x^{2} - 4 x^{3} + 16 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 26, 67, 274, 1084, 3935, 15964, 65890, 263011, 1048586]$ |
$17$ |
$[17, 459, 4148, 70227, 1110797, 16127424, 261613901, 4318188003, 68947130996, 1099519078059]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
4.0.2873.1 |
$D_{4}$ |
simple |
2.4.ab_g |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
✓ |
|
✓ |
✓ |
$( 1 - 2 x + 4 x^{2} )( 1 + x + 4 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$4$ |
$[4, 28, 70, 256, 1054, 3976, 16006, 66016, 263950, 1047928]$ |
$18$ |
$[18, 504, 4374, 65520, 1078398, 16288776, 262290438, 4326547680, 69193972494, 1098831485304]$ |
$2$ |
$2$ |
$10$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-15}) \) |
$C_2$, $C_2$ |
1.4.ac $\times$ 1.4.b |
2.4.ab_h |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 7 x^{2} - 4 x^{3} + 16 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 30, 73, 234, 1014, 4071, 16216, 65874, 263737, 1047550]$ |
$19$ |
$[19, 551, 4636, 60059, 1036849, 16671056, 265686139, 4317100979, 69137924356, 1098436793751]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.5225.1 |
$D_{4}$ |
simple |
2.4.ab_i |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
✓ |
|
✓ |
|
$( 1 - x + 4 x^{2} )( 1 + 4 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$4$ |
$[4, 32, 76, 208, 964, 4232, 16636, 65248, 261364, 1048952]$ |
$20$ |
$[20, 600, 4940, 54000, 988100, 17339400, 272580860, 4276044000, 68515265780, 1099903515000]$ |
$0$ |
$0$ |
$10$ |
$12$ |
$2$ |
\(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.4.ab $\times$ 1.4.a |
2.4.a_ai |
$2$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 2 x )^{2}( 1 + 2 x )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$5$ |
$[5, 1, 65, 193, 1025, 3841, 16385, 64513, 262145, 1044481]$ |
$9$ |
$[9, 81, 3969, 50625, 1046529, 15752961, 268402689, 4228250625, 68718952449, 1095222947841]$ |
$0$ |
$0$ |
$19$ |
$12$ |
$2$ |
\(\Q\), \(\Q\) |
Trivial, Trivial |
1.4.ae $\times$ 1.4.e |
2.4.a_ah |
$2$ |
$\F_{2^{2}}$ |
$2$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
|
$1 - 7 x^{2} + 16 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$5$ |
$[5, 3, 65, 223, 1025, 4083, 16385, 65983, 262145, 1051923]$ |
$10$ |
$[10, 100, 4090, 57600, 1050250, 16728100, 268465690, 4324377600, 68719562410, 1103025062500]$ |
$0$ |
$0$ |
$6$ |
$12$ |
$2$ |
\(\Q(i, \sqrt{15})\) |
$C_2^2$ |
simple |