Properties

Label 2.4.af_n
Base Field $\F_{2^{2}}$
Dimension $2$
Ordinary Yes
$p$-rank $2$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{2^{2}}$
Dimension:  $2$
L-polynomial:  $1 - 5 x + 13 x^{2} - 20 x^{3} + 16 x^{4}$
Frobenius angles:  $\pm0.140237960897$, $\pm0.387712212190$
Angle rank:  $2$ (numerical)
Number field:  4.0.1025.1
Galois group:  $D_{4}$
Jacobians:  1

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains the Jacobians of 1 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 5 275 4820 66275 1022625 16966400 275308745 4358310275 68911390580 1098171421875

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 0 18 75 258 1000 4143 16800 66498 262875 1047298

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{2^{2}}$
The endomorphism algebra of this simple isogeny class is 4.0.1025.1.
All geometric endomorphisms are defined over $\F_{2^{2}}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
2.4.f_n$2$2.16.b_b