# Properties

 Label 2.4.ab_ab Base Field $\F_{2^{2}}$ Dimension $2$ Ordinary Yes $p$-rank $2$ Principally polarizable Yes Contains a Jacobian Yes

## Invariants

 Base field: $\F_{2^{2}}$ Dimension: $2$ L-polynomial: $1 - x - x^{2} - 4 x^{3} + 16 x^{4}$ Frobenius angles: $\pm0.153921966489$, $\pm0.719142225765$ Angle rank: $2$ (numerical) Number field: 4.0.45177.1 Galois group: $D_{4}$ Jacobians: 2

This isogeny class is simple and geometrically simple.

## Newton polygon

This isogeny class is ordinary.

 $p$-rank: $2$ Slopes: $[0, 0, 1, 1]$

## Point counts

This isogeny class contains the Jacobians of 2 curves, and hence is principally polarizable:

• $y^2+(x^3+a+1)y=(a+1)x^4+ax^3+ax+1$
• $y^2+(x^3+a)y=ax^4+(a+1)x^3+(a+1)x+1$

 $r$ 1 2 3 4 5 6 7 8 9 10 $A(\F_{q^r})$ 11 231 3212 76923 1079441 16997904 276773123 4296072627 68791272308 1101020105031

 $r$ 1 2 3 4 5 6 7 8 9 10 $C(\F_{q^r})$ 4 14 49 298 1054 4151 16888 65554 262417 1050014

## Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{2^{2}}$
 The endomorphism algebra of this simple isogeny class is 4.0.45177.1.
All geometric endomorphisms are defined over $\F_{2^{2}}$.

## Base change

This is a primitive isogeny class.

## Twists

Below is a list of all twists of this isogeny class.
 Twist Extension Degree Common base change 2.4.b_ab $2$ 2.16.ad_z