Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 10 x + 97 x^{2} )( 1 + 16 x + 97 x^{2} )$ |
$1 + 26 x + 354 x^{2} + 2522 x^{3} + 9409 x^{4}$ | |
Frobenius angles: | $\pm0.669494215923$, $\pm0.801772189629$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $132$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $12312$ | $88843392$ | $830720595096$ | $7839643257667584$ | $73741555554056185752$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $124$ | $9442$ | $910204$ | $88554238$ | $8587240444$ | $832971693922$ | $80798288199676$ | $7837433624633086$ | $760231058273985148$ | $73742412682217734882$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 132 curves (of which all are hyperelliptic):
- $y^2=36 x^6+62 x^5+96 x^4+12 x^3+5 x^2+92 x+54$
- $y^2=68 x^6+57 x^5+61 x^4+32 x^3+55 x^2+8 x+8$
- $y^2=93 x^6+11 x^5+79 x^4+22 x^3+4 x^2+40 x+51$
- $y^2=94 x^6+59 x^5+68 x^4+17 x^3+71 x^2+51 x+61$
- $y^2=43 x^6+94 x^5+16 x^4+44 x^3+6 x^2+89 x+43$
- $y^2=31 x^6+65 x^5+54 x^4+61 x^3+93 x^2+44 x+31$
- $y^2=62 x^6+8 x^5+65 x^4+28 x^3+65 x^2+8 x+62$
- $y^2=2 x^6+82 x^5+50 x^4+80 x^3+51 x^2+58$
- $y^2=26 x^6+3 x^5+19 x^4+52 x^3+19 x^2+3 x+26$
- $y^2=22 x^6+43 x^5+77 x^4+32 x^3+52 x^2+68 x+62$
- $y^2=11 x^6+x^5+x^4+52 x^3+44 x^2+93 x+4$
- $y^2=43 x^6+20 x^5+79 x^4+73 x^3+25 x^2+78 x+76$
- $y^2=x^6+82 x^5+17 x^4+89 x^3+17 x^2+82 x+1$
- $y^2=36 x^6+17 x^5+8 x^4+2 x^3+8 x^2+17 x+36$
- $y^2=64 x^6+83 x^5+85 x^4+18 x^3+79 x^2+17 x+22$
- $y^2=11 x^6+84 x^5+96 x^4+35 x^3+96 x^2+84 x+11$
- $y^2=28 x^6+29 x^5+56 x^4+52 x^3+20 x^2+67 x+75$
- $y^2=62 x^6+95 x^5+27 x^4+45 x^3+27 x^2+95 x+62$
- $y^2=83 x^6+90 x^5+74 x^4+x^3+78 x^2+55 x+74$
- $y^2=84 x^6+43 x^5+65 x^4+21 x^3+24 x^2+96 x+63$
- and 112 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$The isogeny class factors as 1.97.k $\times$ 1.97.q and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.97.aba_nq | $2$ | (not in LMFDB) |
2.97.ag_bi | $2$ | (not in LMFDB) |
2.97.g_bi | $2$ | (not in LMFDB) |