# Curves in abelian variety isogeny class 2.97.ba_nq, downloaded from the LMFDB on 12 September 2025. y^2=36*x^6+62*x^5+96*x^4+12*x^3+5*x^2+92*x+54 y^2=68*x^6+57*x^5+61*x^4+32*x^3+55*x^2+8*x+8 y^2=93*x^6+11*x^5+79*x^4+22*x^3+4*x^2+40*x+51 y^2=94*x^6+59*x^5+68*x^4+17*x^3+71*x^2+51*x+61 y^2=43*x^6+94*x^5+16*x^4+44*x^3+6*x^2+89*x+43 y^2=31*x^6+65*x^5+54*x^4+61*x^3+93*x^2+44*x+31 y^2=62*x^6+8*x^5+65*x^4+28*x^3+65*x^2+8*x+62 y^2=2*x^6+82*x^5+50*x^4+80*x^3+51*x^2+58 y^2=26*x^6+3*x^5+19*x^4+52*x^3+19*x^2+3*x+26 y^2=22*x^6+43*x^5+77*x^4+32*x^3+52*x^2+68*x+62 y^2=11*x^6+x^5+x^4+52*x^3+44*x^2+93*x+4 y^2=43*x^6+20*x^5+79*x^4+73*x^3+25*x^2+78*x+76 y^2=x^6+82*x^5+17*x^4+89*x^3+17*x^2+82*x+1 y^2=36*x^6+17*x^5+8*x^4+2*x^3+8*x^2+17*x+36 y^2=64*x^6+83*x^5+85*x^4+18*x^3+79*x^2+17*x+22 y^2=11*x^6+84*x^5+96*x^4+35*x^3+96*x^2+84*x+11 y^2=28*x^6+29*x^5+56*x^4+52*x^3+20*x^2+67*x+75 y^2=62*x^6+95*x^5+27*x^4+45*x^3+27*x^2+95*x+62 y^2=83*x^6+90*x^5+74*x^4+x^3+78*x^2+55*x+74 y^2=84*x^6+43*x^5+65*x^4+21*x^3+24*x^2+96*x+63 y^2=71*x^6+18*x^5+14*x^4+47*x^3+24*x^2+55*x+11 y^2=5*x^6+41*x^5+63*x^4+58*x^3+56*x^2+46*x+75 y^2=71*x^6+12*x^5+24*x^4+34*x^3+34*x^2+69*x+48 y^2=25*x^6+25*x^5+70*x^4+5*x^3+12*x^2+63*x+38 y^2=50*x^6+39*x^5+36*x^4+60*x^3+10*x^2+23*x+61 y^2=x^6+38*x^5+29*x^4+30*x^3+72*x^2+55*x+47 y^2=2*x^6+3*x^5+55*x^4+61*x^3+82*x^2+9*x+26 y^2=17*x^6+74*x^5+35*x^4+62*x^3+79*x^2+18*x+39 y^2=36*x^6+48*x^5+82*x^4+37*x^3+82*x^2+48*x+36 y^2=94*x^6+42*x^5+77*x^4+33*x^3+92*x^2+39*x+53 y^2=42*x^6+78*x^5+87*x^4+80*x^3+78*x^2+85*x+38 y^2=23*x^6+45*x^5+92*x^4+76*x^3+79*x^2+46*x+24 y^2=61*x^6+41*x^5+21*x^4+10*x^3+16*x^2+16*x+26 y^2=92*x^6+89*x^5+64*x^4+22*x^3+68*x^2+92*x+9 y^2=32*x^6+83*x^5+36*x^4+54*x^3+73*x^2+80*x+48 y^2=79*x^6+87*x^5+27*x^4+53*x^3+36*x^2+90*x+22 y^2=67*x^6+17*x^5+78*x^4+59*x^3+64*x^2+58*x+49 y^2=65*x^6+25*x^5+29*x^4+44*x^3+40*x^2+69*x+53 y^2=72*x^6+72*x^5+67*x^4+94*x^3+81*x^2+67*x+17 y^2=36*x^6+82*x^5+44*x^4+12*x^3+20*x+16 y^2=53*x^6+56*x^5+39*x^4+58*x^3+87*x^2+25*x+77 y^2=4*x^6+21*x^5+26*x^4+71*x^3+14*x^2+33*x+50 y^2=82*x^6+42*x^5+37*x^4+78*x^3+83*x^2+87*x+17 y^2=77*x^6+5*x^5+79*x^4+54*x^3+29*x^2+40*x+59 y^2=47*x^6+38*x^5+25*x^4+80*x^3+79*x^2+73*x+82 y^2=18*x^6+67*x^5+27*x^4+32*x^3+44*x^2+5*x+77 y^2=56*x^6+33*x^5+40*x^4+2*x^3+12*x^2+55*x+32 y^2=73*x^6+10*x^5+91*x^4+32*x^3+67*x^2+4*x+56 y^2=46*x^6+27*x^5+4*x^4+2*x^3+4*x^2+27*x+46 y^2=67*x^6+70*x^5+14*x^4+3*x^3+68*x^2+89*x+11 y^2=92*x^6+62*x^5+36*x^4+8*x^3+73*x^2+11*x+58 y^2=64*x^6+36*x^5+22*x^4+5*x^3+49*x^2+59*x+22 y^2=54*x^6+62*x^5+7*x^4+57*x^3+72*x^2+16*x+49 y^2=31*x^6+31*x^5+90*x^4+17*x^3+21*x+44 y^2=95*x^6+65*x^5+79*x^4+55*x^3+29*x^2+76*x+15 y^2=62*x^6+59*x^5+89*x^4+13*x^3+75*x^2+50*x+89 y^2=65*x^6+18*x^5+15*x^4+58*x^3+15*x^2+18*x+65 y^2=77*x^6+25*x^5+10*x^4+32*x^3+10*x^2+25*x+77 y^2=93*x^6+26*x^5+31*x^4+88*x^3+23*x^2+31*x+94 y^2=95*x^6+89*x^5+9*x^4+10*x^3+24*x^2+94*x+95 y^2=x^6+2*x^5+84*x^4+76*x^3+66*x^2+18*x+42 y^2=65*x^6+95*x^5+49*x^4+84*x^3+31*x^2+60*x+90 y^2=94*x^6+56*x^5+18*x^4+27*x^3+70*x^2+29*x+95 y^2=56*x^6+25*x^5+85*x^4+68*x^3+85*x^2+25*x+56 y^2=3*x^6+26*x^5+89*x^4+48*x^3+67*x^2+47*x+60 y^2=12*x^6+73*x^5+75*x^4+13*x^3+62*x^2+9*x+70 y^2=65*x^6+70*x^5+41*x^4+22*x^3+20*x^2+61*x+70 y^2=44*x^6+8*x^5+50*x^4+38*x^3+50*x^2+8*x+44 y^2=36*x^6+23*x^5+17*x^4+78*x^3+32*x^2+21*x+3 y^2=4*x^6+63*x^5+78*x^4+32*x^3+46*x^2+45*x+70 y^2=65*x^6+57*x^5+6*x^4+32*x^3+82*x^2+63*x+55 y^2=47*x^6+48*x^5+82*x^4+41*x^3+74*x^2+8*x+44 y^2=14*x^6+20*x^5+x^4+63*x^3+3*x^2+83*x+87 y^2=58*x^6+24*x^5+46*x^4+x^3+46*x^2+24*x+58 y^2=10*x^6+82*x^5+87*x^4+41*x^3+79*x^2+95*x+33 y^2=71*x^5+13*x^4+34*x^3+60*x^2+60*x+47 y^2=37*x^6+50*x^5+14*x^4+76*x^3+55*x^2+62*x+68 y^2=44*x^6+30*x^5+69*x^4+85*x^3+46*x^2+78*x+31 y^2=74*x^6+11*x^5+12*x^4+56*x^3+12*x^2+11*x+74 y^2=56*x^6+25*x^5+24*x^4+61*x^3+24*x^2+25*x+56 y^2=62*x^6+51*x^5+10*x^4+79*x^3+18*x^2+4 y^2=32*x^6+58*x^5+74*x^4+5*x^3+74*x^2+58*x+32 y^2=62*x^6+19*x^5+60*x^4+61*x^3+60*x^2+19*x+62 y^2=17*x^6+52*x^5+96*x^4+38*x^3+19*x^2+35*x+12 y^2=23*x^6+55*x^5+50*x^4+78*x^3+22*x^2+75*x+63 y^2=18*x^6+84*x^5+61*x^4+70*x^3+52*x^2+47*x+25 y^2=91*x^6+74*x^5+95*x^4+91*x^3+95*x^2+74*x+91 y^2=30*x^6+40*x^5+84*x^4+2*x^3+3*x^2+58*x+57 y^2=84*x^6+17*x^5+40*x^4+45*x^3+96*x^2+77*x+32 y^2=50*x^6+80*x^5+23*x^4+7*x^3+71*x^2+37*x+50 y^2=65*x^6+17*x^5+33*x^4+53*x^3+40*x^2+75*x+56 y^2=93*x^6+63*x^5+53*x^4+12*x^3+31*x^2+30*x+13 y^2=22*x^6+57*x^5+72*x^4+25*x^3+87*x^2+31*x+91 y^2=70*x^6+11*x^5+14*x^4+36*x^3+57*x^2+84*x+6 y^2=50*x^6+42*x^5+79*x^4+82*x^3+58*x^2+94*x+45 y^2=58*x^6+6*x^5+58*x^4+53*x^3+37*x^2+x+87 y^2=73*x^6+24*x^5+3*x^4+67*x^3+14*x^2+3*x+1 y^2=94*x^6+81*x^5+4*x^4+68*x^3+51*x^2+17*x+60 y^2=81*x^6+63*x^5+7*x^4+86*x^3+11*x^2+26*x+76 y^2=22*x^6+83*x^5+25*x^4+49*x^3+72*x^2+40*x+24 y^2=34*x^6+50*x^5+56*x^4+65*x^3+11*x^2+76*x+92 y^2=63*x^6+41*x^5+x^4+34*x^3+86*x^2+32*x+53 y^2=76*x^6+8*x^5+6*x^4+48*x^3+74*x^2+50*x+87 y^2=89*x^6+32*x^5+25*x^4+60*x^3+32*x^2+4*x+89 y^2=31*x^6+73*x^5+38*x^4+24*x^2+22*x+82 y^2=6*x^6+63*x^5+64*x^4+58*x^3+73*x^2+78*x+73 y^2=84*x^6+37*x^5+72*x^4+14*x^3+79*x^2+69*x+29 y^2=76*x^6+69*x^5+75*x^4+53*x^3+87*x^2+93*x+1 y^2=8*x^6+38*x^5+31*x^4+66*x^3+31*x^2+38*x+8 y^2=32*x^6+6*x^5+69*x^4+11*x^3+69*x^2+6*x+32 y^2=91*x^6+42*x^5+85*x^4+22*x^3+85*x^2+42*x+91 y^2=86*x^5+20*x^4+25*x^3+26*x^2+68*x+79 y^2=81*x^6+4*x^5+x^4+12*x^3+x^2+4*x+81 y^2=29*x^6+49*x^5+54*x^4+94*x^3+35*x^2+94*x+92 y^2=52*x^6+4*x^5+59*x^4+49*x^3+38*x^2+76*x+71 y^2=24*x^6+89*x^5+91*x^4+8*x^3+18*x^2+25*x+31 y^2=77*x^6+38*x^5+55*x^4+30*x^3+89*x^2+41*x+30 y^2=73*x^6+44*x^5+40*x^4+64*x^3+10*x^2+27*x+36 y^2=30*x^6+60*x^5+73*x^4+40*x^3+77*x^2+39*x+87 y^2=67*x^6+95*x^5+15*x^4+60*x^3+61*x^2+84*x+53 y^2=89*x^6+49*x^5+50*x^4+86*x^3+32*x^2+22*x+1 y^2=18*x^6+14*x^5+21*x^4+93*x^3+55*x^2+56*x+50 y^2=41*x^6+33*x^5+38*x^4+26*x^3+24*x^2+58*x+58 y^2=94*x^6+60*x^4+20*x^3+54*x^2+28*x+43 y^2=2*x^6+94*x^5+40*x^4+3*x^3+40*x^2+94*x+2 y^2=9*x^6+67*x^5+41*x^4+78*x^3+10*x^2+36*x+61 y^2=36*x^6+64*x^5+7*x^4+54*x^3+7*x^2+64*x+36 y^2=88*x^6+66*x^5+26*x^4+86*x^3+39*x^2+3*x+6 y^2=64*x^6+70*x^5+83*x^4+23*x^3+30*x^2+72*x+47 y^2=9*x^6+53*x^5+29*x^4+4*x^3+76*x^2+94*x+32 y^2=93*x^6+75*x^5+53*x^4+63*x^3+83*x^2+76*x+50 y^2=42*x^6+64*x^5+96*x^4+11*x^3+75*x^2+79*x+33