-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 12312, 'abvar_counts': [12312, 88843392, 830720595096, 7839643257667584, 73741555554056185752, 693842101933391093966976, 6528363075302001126944805144, 61425365583398945143092255129600, 577951262253712188969824038501827864, 5437943428730989799213579479203406311552], 'abvar_counts_str': '12312 88843392 830720595096 7839643257667584 73741555554056185752 693842101933391093966976 6528363075302001126944805144 61425365583398945143092255129600 577951262253712188969824038501827864 5437943428730989799213579479203406311552 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.669494215923349, 0.801772189628984], 'center_dim': 4, 'cohen_macaulay_max': 2, 'curve_count': 124, 'curve_counts': [124, 9442, 910204, 88554238, 8587240444, 832971693922, 80798288199676, 7837433624633086, 760231058273985148, 73742412682217734882], 'curve_counts_str': '124 9442 910204 88554238 8587240444 832971693922 80798288199676 7837433624633086 760231058273985148 73742412682217734882 ', 'curves': ['y^2=36*x^6+62*x^5+96*x^4+12*x^3+5*x^2+92*x+54', 'y^2=68*x^6+57*x^5+61*x^4+32*x^3+55*x^2+8*x+8', 'y^2=93*x^6+11*x^5+79*x^4+22*x^3+4*x^2+40*x+51', 'y^2=94*x^6+59*x^5+68*x^4+17*x^3+71*x^2+51*x+61', 'y^2=43*x^6+94*x^5+16*x^4+44*x^3+6*x^2+89*x+43', 'y^2=31*x^6+65*x^5+54*x^4+61*x^3+93*x^2+44*x+31', 'y^2=62*x^6+8*x^5+65*x^4+28*x^3+65*x^2+8*x+62', 'y^2=2*x^6+82*x^5+50*x^4+80*x^3+51*x^2+58', 'y^2=26*x^6+3*x^5+19*x^4+52*x^3+19*x^2+3*x+26', 'y^2=22*x^6+43*x^5+77*x^4+32*x^3+52*x^2+68*x+62', 'y^2=11*x^6+x^5+x^4+52*x^3+44*x^2+93*x+4', 'y^2=43*x^6+20*x^5+79*x^4+73*x^3+25*x^2+78*x+76', 'y^2=x^6+82*x^5+17*x^4+89*x^3+17*x^2+82*x+1', 'y^2=36*x^6+17*x^5+8*x^4+2*x^3+8*x^2+17*x+36', 'y^2=64*x^6+83*x^5+85*x^4+18*x^3+79*x^2+17*x+22', 'y^2=11*x^6+84*x^5+96*x^4+35*x^3+96*x^2+84*x+11', 'y^2=28*x^6+29*x^5+56*x^4+52*x^3+20*x^2+67*x+75', 'y^2=62*x^6+95*x^5+27*x^4+45*x^3+27*x^2+95*x+62', 'y^2=83*x^6+90*x^5+74*x^4+x^3+78*x^2+55*x+74', 'y^2=84*x^6+43*x^5+65*x^4+21*x^3+24*x^2+96*x+63', 'y^2=71*x^6+18*x^5+14*x^4+47*x^3+24*x^2+55*x+11', 'y^2=5*x^6+41*x^5+63*x^4+58*x^3+56*x^2+46*x+75', 'y^2=71*x^6+12*x^5+24*x^4+34*x^3+34*x^2+69*x+48', 'y^2=25*x^6+25*x^5+70*x^4+5*x^3+12*x^2+63*x+38', 'y^2=50*x^6+39*x^5+36*x^4+60*x^3+10*x^2+23*x+61', 'y^2=x^6+38*x^5+29*x^4+30*x^3+72*x^2+55*x+47', 'y^2=2*x^6+3*x^5+55*x^4+61*x^3+82*x^2+9*x+26', 'y^2=17*x^6+74*x^5+35*x^4+62*x^3+79*x^2+18*x+39', 'y^2=36*x^6+48*x^5+82*x^4+37*x^3+82*x^2+48*x+36', 'y^2=94*x^6+42*x^5+77*x^4+33*x^3+92*x^2+39*x+53', 'y^2=42*x^6+78*x^5+87*x^4+80*x^3+78*x^2+85*x+38', 'y^2=23*x^6+45*x^5+92*x^4+76*x^3+79*x^2+46*x+24', 'y^2=61*x^6+41*x^5+21*x^4+10*x^3+16*x^2+16*x+26', 'y^2=92*x^6+89*x^5+64*x^4+22*x^3+68*x^2+92*x+9', 'y^2=32*x^6+83*x^5+36*x^4+54*x^3+73*x^2+80*x+48', 'y^2=79*x^6+87*x^5+27*x^4+53*x^3+36*x^2+90*x+22', 'y^2=67*x^6+17*x^5+78*x^4+59*x^3+64*x^2+58*x+49', 'y^2=65*x^6+25*x^5+29*x^4+44*x^3+40*x^2+69*x+53', 'y^2=72*x^6+72*x^5+67*x^4+94*x^3+81*x^2+67*x+17', 'y^2=36*x^6+82*x^5+44*x^4+12*x^3+20*x+16', 'y^2=53*x^6+56*x^5+39*x^4+58*x^3+87*x^2+25*x+77', 'y^2=4*x^6+21*x^5+26*x^4+71*x^3+14*x^2+33*x+50', 'y^2=82*x^6+42*x^5+37*x^4+78*x^3+83*x^2+87*x+17', 'y^2=77*x^6+5*x^5+79*x^4+54*x^3+29*x^2+40*x+59', 'y^2=47*x^6+38*x^5+25*x^4+80*x^3+79*x^2+73*x+82', 'y^2=18*x^6+67*x^5+27*x^4+32*x^3+44*x^2+5*x+77', 'y^2=56*x^6+33*x^5+40*x^4+2*x^3+12*x^2+55*x+32', 'y^2=73*x^6+10*x^5+91*x^4+32*x^3+67*x^2+4*x+56', 'y^2=46*x^6+27*x^5+4*x^4+2*x^3+4*x^2+27*x+46', 'y^2=67*x^6+70*x^5+14*x^4+3*x^3+68*x^2+89*x+11', 'y^2=92*x^6+62*x^5+36*x^4+8*x^3+73*x^2+11*x+58', 'y^2=64*x^6+36*x^5+22*x^4+5*x^3+49*x^2+59*x+22', 'y^2=54*x^6+62*x^5+7*x^4+57*x^3+72*x^2+16*x+49', 'y^2=31*x^6+31*x^5+90*x^4+17*x^3+21*x+44', 'y^2=95*x^6+65*x^5+79*x^4+55*x^3+29*x^2+76*x+15', 'y^2=62*x^6+59*x^5+89*x^4+13*x^3+75*x^2+50*x+89', 'y^2=65*x^6+18*x^5+15*x^4+58*x^3+15*x^2+18*x+65', 'y^2=77*x^6+25*x^5+10*x^4+32*x^3+10*x^2+25*x+77', 'y^2=93*x^6+26*x^5+31*x^4+88*x^3+23*x^2+31*x+94', 'y^2=95*x^6+89*x^5+9*x^4+10*x^3+24*x^2+94*x+95', 'y^2=x^6+2*x^5+84*x^4+76*x^3+66*x^2+18*x+42', 'y^2=65*x^6+95*x^5+49*x^4+84*x^3+31*x^2+60*x+90', 'y^2=94*x^6+56*x^5+18*x^4+27*x^3+70*x^2+29*x+95', 'y^2=56*x^6+25*x^5+85*x^4+68*x^3+85*x^2+25*x+56', 'y^2=3*x^6+26*x^5+89*x^4+48*x^3+67*x^2+47*x+60', 'y^2=12*x^6+73*x^5+75*x^4+13*x^3+62*x^2+9*x+70', 'y^2=65*x^6+70*x^5+41*x^4+22*x^3+20*x^2+61*x+70', 'y^2=44*x^6+8*x^5+50*x^4+38*x^3+50*x^2+8*x+44', 'y^2=36*x^6+23*x^5+17*x^4+78*x^3+32*x^2+21*x+3', 'y^2=4*x^6+63*x^5+78*x^4+32*x^3+46*x^2+45*x+70', 'y^2=65*x^6+57*x^5+6*x^4+32*x^3+82*x^2+63*x+55', 'y^2=47*x^6+48*x^5+82*x^4+41*x^3+74*x^2+8*x+44', 'y^2=14*x^6+20*x^5+x^4+63*x^3+3*x^2+83*x+87', 'y^2=58*x^6+24*x^5+46*x^4+x^3+46*x^2+24*x+58', 'y^2=10*x^6+82*x^5+87*x^4+41*x^3+79*x^2+95*x+33', 'y^2=71*x^5+13*x^4+34*x^3+60*x^2+60*x+47', 'y^2=37*x^6+50*x^5+14*x^4+76*x^3+55*x^2+62*x+68', 'y^2=44*x^6+30*x^5+69*x^4+85*x^3+46*x^2+78*x+31', 'y^2=74*x^6+11*x^5+12*x^4+56*x^3+12*x^2+11*x+74', 'y^2=56*x^6+25*x^5+24*x^4+61*x^3+24*x^2+25*x+56', 'y^2=62*x^6+51*x^5+10*x^4+79*x^3+18*x^2+4', 'y^2=32*x^6+58*x^5+74*x^4+5*x^3+74*x^2+58*x+32', 'y^2=62*x^6+19*x^5+60*x^4+61*x^3+60*x^2+19*x+62', 'y^2=17*x^6+52*x^5+96*x^4+38*x^3+19*x^2+35*x+12', 'y^2=23*x^6+55*x^5+50*x^4+78*x^3+22*x^2+75*x+63', 'y^2=18*x^6+84*x^5+61*x^4+70*x^3+52*x^2+47*x+25', 'y^2=91*x^6+74*x^5+95*x^4+91*x^3+95*x^2+74*x+91', 'y^2=30*x^6+40*x^5+84*x^4+2*x^3+3*x^2+58*x+57', 'y^2=84*x^6+17*x^5+40*x^4+45*x^3+96*x^2+77*x+32', 'y^2=50*x^6+80*x^5+23*x^4+7*x^3+71*x^2+37*x+50', 'y^2=65*x^6+17*x^5+33*x^4+53*x^3+40*x^2+75*x+56', 'y^2=93*x^6+63*x^5+53*x^4+12*x^3+31*x^2+30*x+13', 'y^2=22*x^6+57*x^5+72*x^4+25*x^3+87*x^2+31*x+91', 'y^2=70*x^6+11*x^5+14*x^4+36*x^3+57*x^2+84*x+6', 'y^2=50*x^6+42*x^5+79*x^4+82*x^3+58*x^2+94*x+45', 'y^2=58*x^6+6*x^5+58*x^4+53*x^3+37*x^2+x+87', 'y^2=73*x^6+24*x^5+3*x^4+67*x^3+14*x^2+3*x+1', 'y^2=94*x^6+81*x^5+4*x^4+68*x^3+51*x^2+17*x+60', 'y^2=81*x^6+63*x^5+7*x^4+86*x^3+11*x^2+26*x+76', 'y^2=22*x^6+83*x^5+25*x^4+49*x^3+72*x^2+40*x+24', 'y^2=34*x^6+50*x^5+56*x^4+65*x^3+11*x^2+76*x+92', 'y^2=63*x^6+41*x^5+x^4+34*x^3+86*x^2+32*x+53', 'y^2=76*x^6+8*x^5+6*x^4+48*x^3+74*x^2+50*x+87', 'y^2=89*x^6+32*x^5+25*x^4+60*x^3+32*x^2+4*x+89', 'y^2=31*x^6+73*x^5+38*x^4+24*x^2+22*x+82', 'y^2=6*x^6+63*x^5+64*x^4+58*x^3+73*x^2+78*x+73', 'y^2=84*x^6+37*x^5+72*x^4+14*x^3+79*x^2+69*x+29', 'y^2=76*x^6+69*x^5+75*x^4+53*x^3+87*x^2+93*x+1', 'y^2=8*x^6+38*x^5+31*x^4+66*x^3+31*x^2+38*x+8', 'y^2=32*x^6+6*x^5+69*x^4+11*x^3+69*x^2+6*x+32', 'y^2=91*x^6+42*x^5+85*x^4+22*x^3+85*x^2+42*x+91', 'y^2=86*x^5+20*x^4+25*x^3+26*x^2+68*x+79', 'y^2=81*x^6+4*x^5+x^4+12*x^3+x^2+4*x+81', 'y^2=29*x^6+49*x^5+54*x^4+94*x^3+35*x^2+94*x+92', 'y^2=52*x^6+4*x^5+59*x^4+49*x^3+38*x^2+76*x+71', 'y^2=24*x^6+89*x^5+91*x^4+8*x^3+18*x^2+25*x+31', 'y^2=77*x^6+38*x^5+55*x^4+30*x^3+89*x^2+41*x+30', 'y^2=73*x^6+44*x^5+40*x^4+64*x^3+10*x^2+27*x+36', 'y^2=30*x^6+60*x^5+73*x^4+40*x^3+77*x^2+39*x+87', 'y^2=67*x^6+95*x^5+15*x^4+60*x^3+61*x^2+84*x+53', 'y^2=89*x^6+49*x^5+50*x^4+86*x^3+32*x^2+22*x+1', 'y^2=18*x^6+14*x^5+21*x^4+93*x^3+55*x^2+56*x+50', 'y^2=41*x^6+33*x^5+38*x^4+26*x^3+24*x^2+58*x+58', 'y^2=94*x^6+60*x^4+20*x^3+54*x^2+28*x+43', 'y^2=2*x^6+94*x^5+40*x^4+3*x^3+40*x^2+94*x+2', 'y^2=9*x^6+67*x^5+41*x^4+78*x^3+10*x^2+36*x+61', 'y^2=36*x^6+64*x^5+7*x^4+54*x^3+7*x^2+64*x+36', 'y^2=88*x^6+66*x^5+26*x^4+86*x^3+39*x^2+3*x+6', 'y^2=64*x^6+70*x^5+83*x^4+23*x^3+30*x^2+72*x+47', 'y^2=9*x^6+53*x^5+29*x^4+4*x^3+76*x^2+94*x+32', 'y^2=93*x^6+75*x^5+53*x^4+63*x^3+83*x^2+76*x+50', 'y^2=42*x^6+64*x^5+96*x^4+11*x^3+75*x^2+79*x+33'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 30, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 2, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1', '2T1'], 'geometric_number_fields': ['2.0.8.1', '2.0.132.1'], 'geometric_splitting_field': '4.0.278784.3', 'geometric_splitting_polynomials': [[289, 0, -32, 0, 1]], 'group_structure_count': 12, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 132, 'is_geometrically_simple': False, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 132, 'label': '2.97.ba_nq', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.8.1', '2.0.132.1'], 'p': 97, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 26, 354, 2522, 9409], 'poly_str': '1 26 354 2522 9409 ', 'primitive_models': [], 'q': 97, 'real_poly': [1, 26, 160], 'simple_distinct': ['1.97.k', '1.97.q'], 'simple_factors': ['1.97.kA', '1.97.qA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['2,5*F+5', '3,2*F+4'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.278784.3', 'splitting_polynomials': [[289, 0, -32, 0, 1]], 'twist_count': 4, 'twists': [['2.97.aba_nq', '2.9409.bg_tfq', 2], ['2.97.ag_bi', '2.9409.bg_tfq', 2], ['2.97.g_bi', '2.9409.bg_tfq', 2]], 'weak_equivalence_count': 42, 'zfv_index': 216, 'zfv_index_factorization': [[2, 3], [3, 3]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 38016, 'zfv_singular_count': 4, 'zfv_singular_primes': ['2,5*F+5', '3,2*F+4']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 129631
{'base_label': '2.97.ba_nq', 'extension_degree': 1, 'extension_label': '1.97.k', 'multiplicity': 1}
-
id: 129632
{'base_label': '2.97.ba_nq', 'extension_degree': 1, 'extension_label': '1.97.q', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.8.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.97.k', 'galois_group': '2T1', 'places': [['17', '1'], ['80', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.132.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.97.q', 'galois_group': '2T1', 'places': [['8', '1'], ['89', '1']]}