Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 7 x + 79 x^{2} )( 1 + 4 x + 79 x^{2} )$ |
| $1 - 3 x + 130 x^{2} - 237 x^{3} + 6241 x^{4}$ | |
| Frobenius angles: | $\pm0.371166915609$, $\pm0.572243955238$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $112$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6132$ | $40544784$ | $243300271536$ | $1516833077659200$ | $9468278561933511852$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $77$ | $6493$ | $493472$ | $38943001$ | $3077057207$ | $243086914366$ | $19203902883473$ | $1517108906332561$ | $119851596931955168$ | $9468276074870495653$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):
- $y^2=44 x^6+31 x^5+63 x^4+11 x^3+34 x+46$
- $y^2=69 x^6+29 x^5+10 x^4+22 x^3+77 x^2+62 x+39$
- $y^2=62 x^6+73 x^5+42 x^4+27 x^3+30 x^2+35 x+56$
- $y^2=47 x^6+16 x^5+33 x^4+41 x^3+33 x^2+57 x+51$
- $y^2=76 x^6+12 x^5+77 x^4+73 x^3+29 x^2+24 x+28$
- $y^2=72 x^6+59 x^5+47 x^4+7 x^3+48 x^2+32 x+13$
- $y^2=55 x^6+54 x^5+38 x^4+70 x^3+32 x^2+60 x+47$
- $y^2=41 x^6+59 x^5+15 x^4+22 x^3+75 x^2+58 x+1$
- $y^2=23 x^6+75 x^5+30 x^4+18 x^3+15 x^2+46 x+11$
- $y^2=49 x^6+29 x^5+38 x^4+3 x^3+76 x^2+65 x+52$
- $y^2=35 x^6+52 x^5+75 x^4+29 x^3+60 x^2+74 x+6$
- $y^2=38 x^6+69 x^5+28 x^4+72 x^3+48 x^2+76 x+51$
- $y^2=8 x^6+74 x^5+16 x^4+40 x^3+25 x^2+11 x+65$
- $y^2=76 x^6+27 x^5+6 x^4+54 x^3+26 x^2+20 x+9$
- $y^2=77 x^6+31 x^5+11 x^4+24 x^3+71 x^2+7 x+67$
- $y^2=46 x^6+53 x^5+8 x^4+12 x^3+68 x^2+70 x+63$
- $y^2=51 x^6+73 x^5+75 x^3+20 x^2+26 x+42$
- $y^2=7 x^6+2 x^5+53 x^4+7 x^3+7 x^2+x+8$
- $y^2=67 x^6+74 x^5+54 x^4+46 x^3+70 x^2+51 x+59$
- $y^2=64 x^6+41 x^5+68 x^4+36 x^3+13 x^2+15 x+56$
- and 92 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$| The isogeny class factors as 1.79.ah $\times$ 1.79.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.