# Stored data for abelian variety isogeny class 2.79.ad_fa, downloaded from the LMFDB on 19 December 2025. {"abvar_count": 6132, "abvar_counts": [6132, 40544784, 243300271536, 1516833077659200, 9468278561933511852, 59091379483772645243136, 368790003153247767224286972, 2301619287384838925453811052800, 14364405173360308385015862554911536, 89648251903404317619114698184485650704], "abvar_counts_str": "6132 40544784 243300271536 1516833077659200 9468278561933511852 59091379483772645243136 368790003153247767224286972 2301619287384838925453811052800 14364405173360308385015862554911536 89648251903404317619114698184485650704 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.371166915609395, 0.572243955237905], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 77, "curve_counts": [77, 6493, 493472, 38943001, 3077057207, 243086914366, 19203902883473, 1517108906332561, 119851596931955168, 9468276074870495653], "curve_counts_str": "77 6493 493472 38943001 3077057207 243086914366 19203902883473 1517108906332561 119851596931955168 9468276074870495653 ", "curves": ["y^2=44*x^6+31*x^5+63*x^4+11*x^3+34*x+46", "y^2=69*x^6+29*x^5+10*x^4+22*x^3+77*x^2+62*x+39", "y^2=62*x^6+73*x^5+42*x^4+27*x^3+30*x^2+35*x+56", "y^2=47*x^6+16*x^5+33*x^4+41*x^3+33*x^2+57*x+51", "y^2=76*x^6+12*x^5+77*x^4+73*x^3+29*x^2+24*x+28", "y^2=72*x^6+59*x^5+47*x^4+7*x^3+48*x^2+32*x+13", "y^2=55*x^6+54*x^5+38*x^4+70*x^3+32*x^2+60*x+47", "y^2=41*x^6+59*x^5+15*x^4+22*x^3+75*x^2+58*x+1", "y^2=23*x^6+75*x^5+30*x^4+18*x^3+15*x^2+46*x+11", "y^2=49*x^6+29*x^5+38*x^4+3*x^3+76*x^2+65*x+52", "y^2=35*x^6+52*x^5+75*x^4+29*x^3+60*x^2+74*x+6", "y^2=38*x^6+69*x^5+28*x^4+72*x^3+48*x^2+76*x+51", "y^2=8*x^6+74*x^5+16*x^4+40*x^3+25*x^2+11*x+65", "y^2=76*x^6+27*x^5+6*x^4+54*x^3+26*x^2+20*x+9", "y^2=77*x^6+31*x^5+11*x^4+24*x^3+71*x^2+7*x+67", "y^2=46*x^6+53*x^5+8*x^4+12*x^3+68*x^2+70*x+63", "y^2=51*x^6+73*x^5+75*x^3+20*x^2+26*x+42", "y^2=7*x^6+2*x^5+53*x^4+7*x^3+7*x^2+x+8", "y^2=67*x^6+74*x^5+54*x^4+46*x^3+70*x^2+51*x+59", "y^2=64*x^6+41*x^5+68*x^4+36*x^3+13*x^2+15*x+56", "y^2=32*x^6+77*x^5+7*x^4+10*x^3+54*x^2+58*x+3", "y^2=2*x^6+7*x^5+31*x^4+29*x^3+31*x^2+31*x+10", "y^2=15*x^6+19*x^5+5*x^4+64*x^3+48*x^2+63*x+44", "y^2=32*x^6+45*x^5+54*x^4+48*x^3+74*x^2+74*x+67", "y^2=43*x^6+54*x^5+20*x^4+x^3+51*x^2+24*x+72", "y^2=21*x^6+32*x^5+30*x^4+3*x^3+x^2+33*x+33", "y^2=22*x^6+18*x^5+20*x^4+32*x^3+73*x^2+46*x+7", "y^2=54*x^6+8*x^5+77*x^4+68*x^3+39*x^2+14", "y^2=62*x^6+20*x^5+9*x^4+61*x^3+62*x^2+55*x+60", "y^2=43*x^6+12*x^5+13*x^4+4*x^3+44*x^2+23*x+19", "y^2=40*x^6+31*x^5+61*x^4+52*x^3+6*x^2+50*x+63", "y^2=71*x^6+21*x^5+45*x^4+27*x^3+47*x+58", "y^2=65*x^6+8*x^5+63*x^4+67*x^3+5*x^2+x+26", "y^2=40*x^6+12*x^5+77*x^4+29*x^3+78*x^2+16*x+48", "y^2=61*x^6+18*x^5+63*x^4+47*x^3+76*x^2+20*x+39", "y^2=78*x^6+3*x^5+65*x^4+64*x^3+45*x^2+67*x+39", "y^2=40*x^6+50*x^5+57*x^4+33*x^3+26*x^2+40*x+22", "y^2=2*x^6+31*x^5+47*x^4+19*x^3+69*x+56", "y^2=24*x^6+49*x^5+50*x^4+17*x^3+40*x^2+5*x+31", "y^2=44*x^6+45*x^5+39*x^4+62*x^3+71*x^2+3*x+17", "y^2=71*x^6+23*x^5+76*x^4+31*x^3+15*x^2+15*x+76", "y^2=45*x^6+39*x^5+7*x^4+3*x^3+26*x^2+70*x+69", "y^2=34*x^6+3*x^5+62*x^4+41*x^3+15*x^2+41*x+65", "y^2=68*x^6+71*x^5+24*x^4+75*x^3+65*x^2+7*x+61", "y^2=9*x^6+23*x^5+57*x^4+48*x^2+17*x+54", "y^2=6*x^6+2*x^5+68*x^4+24*x^3+54*x^2+72*x+25", "y^2=13*x^6+58*x^5+17*x^4+28*x^3+35*x^2+49*x+73", "y^2=9*x^6+41*x^5+18*x^4+77*x^3+61*x^2+34*x+12", "y^2=72*x^6+69*x^5+67*x^4+3*x^3+49*x^2+27*x+74", "y^2=31*x^6+61*x^5+66*x^4+26*x^3+56*x^2+70*x+5", "y^2=4*x^6+43*x^5+64*x^4+14*x^3+70*x^2+21*x+78", "y^2=74*x^6+75*x^5+14*x^4+66*x^3+70*x^2+5*x+17", "y^2=57*x^6+13*x^5+19*x^3+70*x^2+31*x+1", "y^2=21*x^6+77*x^5+12*x^4+37*x^3+6*x^2+46*x+34", "y^2=12*x^6+20*x^5+68*x^4+22*x^3+74*x^2+43*x+38", "y^2=64*x^6+14*x^5+58*x^4+31*x^3+67*x^2+3*x+71", "y^2=5*x^6+70*x^5+11*x^4+54*x^3+10*x^2+24*x+1", "y^2=12*x^6+67*x^5+12*x^4+78*x^3+17*x^2+24*x+10", "y^2=33*x^6+49*x^5+62*x^4+5*x^3+47*x^2+2*x+4", "y^2=73*x^6+35*x^5+75*x^4+22*x^3+59*x^2+70*x+6", "y^2=21*x^6+25*x^5+21*x^4+44*x^3+74*x^2+42*x+57", "y^2=62*x^6+14*x^5+38*x^4+5*x^3+77*x^2+6*x+64", "y^2=5*x^6+75*x^5+37*x^4+66*x^3+39*x^2+32*x+61", "y^2=49*x^6+27*x^5+33*x^4+6*x^3+53*x^2+30*x+6", "y^2=16*x^6+65*x^5+47*x^4+73*x^3+x^2+39*x+68", "y^2=57*x^6+63*x^5+77*x^4+37*x^3+10*x^2+21*x+58", "y^2=3*x^6+47*x^5+27*x^4+61*x^3+14*x^2+63*x+76", "y^2=6*x^6+56*x^5+4*x^3+43*x^2+30*x+15", "y^2=58*x^6+75*x^5+17*x^4+51*x^3+51*x^2+56*x+32", "y^2=27*x^6+20*x^5+58*x^4+14*x^3+65*x^2+11*x+50", "y^2=43*x^6+44*x^5+40*x^4+66*x^3+2*x^2+16*x+18", "y^2=46*x^6+18*x^5+31*x^4+23*x^3+8*x^2+41*x+3", "y^2=5*x^6+38*x^5+52*x^4+29*x^3+3*x^2+45*x+56", "y^2=52*x^6+10*x^5+78*x^4+4*x^3+76*x^2+75*x+69", "y^2=42*x^6+27*x^5+63*x^4+44*x^3+44*x^2+38*x+11", "y^2=65*x^6+72*x^5+14*x^4+19*x^3+77*x^2+69*x+50", "y^2=34*x^6+17*x^5+66*x^4+x^3+61*x^2+38*x+18", "y^2=22*x^6+59*x^5+63*x^4+76*x^3+32*x^2+45*x+64", "y^2=25*x^6+63*x^5+24*x^4+5*x^3+66*x^2+73*x", "y^2=4*x^6+9*x^5+8*x^4+28*x^3+51*x^2+60*x+57", "y^2=31*x^6+41*x^5+22*x^4+13*x^3+14*x^2+45*x", "y^2=21*x^6+27*x^5+63*x^4+10*x^3+36*x^2+48*x+54", "y^2=x^6+3*x^5+5*x^4+27*x^3+30*x^2+34*x+63", "y^2=37*x^6+40*x^5+15*x^4+59*x^3+28*x^2+4*x+21", "y^2=50*x^6+44*x^5+45*x^4+29*x^3+30*x^2+2*x+36", "y^2=61*x^6+20*x^5+x^4+47*x^3+6*x^2+46*x+6", "y^2=77*x^6+19*x^5+49*x^4+65*x^3+35*x+24", "y^2=38*x^6+41*x^5+66*x^4+56*x^3+29*x^2+63*x+50", "y^2=10*x^6+27*x^5+47*x^4+59*x^3+78*x^2+39*x+32", "y^2=29*x^6+20*x^5+60*x^4+57*x^3+77*x^2+9*x+68", "y^2=x^6+17*x^5+19*x^4+3*x^3+66*x^2+16*x+44", "y^2=66*x^6+19*x^5+44*x^4+62*x^3+69*x^2+68*x+3", "y^2=59*x^6+21*x^5+69*x^4+8*x^3+12*x^2+13*x+67", "y^2=3*x^6+24*x^5+46*x^4+37*x^3+66*x^2+13*x+50", "y^2=30*x^6+29*x^5+55*x^4+18*x^3+47*x^2+38*x+32", "y^2=65*x^6+42*x^5+12*x^4+5*x^3+39*x^2+15*x+70", "y^2=50*x^6+68*x^5+48*x^4+57*x^3+7*x^2+47*x+30", "y^2=28*x^6+74*x^5+69*x^4+77*x^3+10*x+8", "y^2=53*x^6+46*x^5+19*x^4+20*x^3+54*x^2+26*x+6", "y^2=72*x^6+50*x^5+29*x^3+52*x^2+66*x", "y^2=56*x^6+30*x^5+18*x^4+21*x^3+17*x^2+31*x+73", "y^2=56*x^6+66*x^5+22*x^4+33*x^3+26*x^2+9*x+74", "y^2=66*x^6+32*x^5+66*x^4+19*x^3+49*x^2+14*x+13", "y^2=7*x^6+21*x^5+36*x^4+69*x^3+26*x^2+70*x+61", "y^2=27*x^6+48*x^5+13*x^4+65*x^3+53*x^2+39*x+31", "y^2=31*x^6+67*x^5+55*x^4+56*x^3+9*x^2+65*x+26", "y^2=28*x^6+72*x^5+23*x^4+52*x^3+65*x^2+20*x+21", "y^2=53*x^6+36*x^5+67*x^4+62*x^3+27*x^2+57*x+14", "y^2=50*x^5+51*x^4+48*x^3+7*x^2+12*x+77", "y^2=37*x^6+78*x^5+44*x^4+77*x^3+23*x^2+7*x+7", "y^2=24*x^6+51*x^5+5*x^4+12*x^3+4*x^2+66*x+32", "y^2=72*x^6+28*x^5+27*x^3+73*x^2+30*x+51"], "dim1_distinct": 2, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 8, "g": 2, "galois_groups": ["2T1", "2T1"], "geom_dim1_distinct": 2, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1", "2T1"], "geometric_number_fields": ["2.0.267.1", "2.0.3.1"], "geometric_splitting_field": "4.0.71289.1", "geometric_splitting_polynomials": [[484, 22, 23, -1, 1]], "group_structure_count": 2, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 112, "is_cyclic": false, "is_geometrically_simple": false, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": false, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 112, "label": "2.79.ad_fa", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 6, "newton_coelevation": 2, "newton_elevation": 0, "noncyclic_primes": [2], "number_fields": ["2.0.267.1", "2.0.3.1"], "p": 79, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -3, 130, -237, 6241], "poly_str": "1 -3 130 -237 6241 ", "primitive_models": [], "q": 79, "real_poly": [1, -3, -28], "simple_distinct": ["1.79.ah", "1.79.e"], "simple_factors": ["1.79.ahA", "1.79.eA"], "simple_multiplicities": [1, 1], "singular_primes": ["11,-2*F^2-94*F+13*V-95", "2,3*F-3", "5,15*F-3*V+4"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.71289.1", "splitting_polynomials": [[484, 22, 23, -1, 1]], "twist_count": 12, "twists": [["2.79.al_he", "2.6241.jr_bpjk", 2], ["2.79.d_fa", "2.6241.jr_bpjk", 2], ["2.79.l_he", "2.6241.jr_bpjk", 2], ["2.79.ay_kr", "2.493039.qq_akcfy", 3], ["2.79.g_cp", "2.493039.qq_akcfy", 3], ["2.79.au_jp", "2.243087455521.abeuns_bpnvfxhco", 6], ["2.79.ak_bn", "2.243087455521.abeuns_bpnvfxhco", 6], ["2.79.ag_cp", "2.243087455521.abeuns_bpnvfxhco", 6], ["2.79.k_bn", "2.243087455521.abeuns_bpnvfxhco", 6], ["2.79.u_jp", "2.243087455521.abeuns_bpnvfxhco", 6], ["2.79.y_kr", "2.243087455521.abeuns_bpnvfxhco", 6]], "weak_equivalence_count": 8, "zfv_index": 1210, "zfv_index_factorization": [[2, 1], [5, 1], [11, 2]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 80100, "zfv_singular_count": 6, "zfv_singular_primes": ["11,-2*F^2-94*F+13*V-95", "2,3*F-3", "5,15*F-3*V+4"]}