-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 6132, 'abvar_counts': [6132, 40544784, 243300271536, 1516833077659200, 9468278561933511852, 59091379483772645243136, 368790003153247767224286972, 2301619287384838925453811052800, 14364405173360308385015862554911536, 89648251903404317619114698184485650704], 'abvar_counts_str': '6132 40544784 243300271536 1516833077659200 9468278561933511852 59091379483772645243136 368790003153247767224286972 2301619287384838925453811052800 14364405173360308385015862554911536 89648251903404317619114698184485650704 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.371166915609395, 0.572243955237905], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 77, 'curve_counts': [77, 6493, 493472, 38943001, 3077057207, 243086914366, 19203902883473, 1517108906332561, 119851596931955168, 9468276074870495653], 'curve_counts_str': '77 6493 493472 38943001 3077057207 243086914366 19203902883473 1517108906332561 119851596931955168 9468276074870495653 ', 'curves': ['y^2=44*x^6+31*x^5+63*x^4+11*x^3+34*x+46', 'y^2=69*x^6+29*x^5+10*x^4+22*x^3+77*x^2+62*x+39', 'y^2=62*x^6+73*x^5+42*x^4+27*x^3+30*x^2+35*x+56', 'y^2=47*x^6+16*x^5+33*x^4+41*x^3+33*x^2+57*x+51', 'y^2=76*x^6+12*x^5+77*x^4+73*x^3+29*x^2+24*x+28', 'y^2=72*x^6+59*x^5+47*x^4+7*x^3+48*x^2+32*x+13', 'y^2=55*x^6+54*x^5+38*x^4+70*x^3+32*x^2+60*x+47', 'y^2=41*x^6+59*x^5+15*x^4+22*x^3+75*x^2+58*x+1', 'y^2=23*x^6+75*x^5+30*x^4+18*x^3+15*x^2+46*x+11', 'y^2=49*x^6+29*x^5+38*x^4+3*x^3+76*x^2+65*x+52', 'y^2=35*x^6+52*x^5+75*x^4+29*x^3+60*x^2+74*x+6', 'y^2=38*x^6+69*x^5+28*x^4+72*x^3+48*x^2+76*x+51', 'y^2=8*x^6+74*x^5+16*x^4+40*x^3+25*x^2+11*x+65', 'y^2=76*x^6+27*x^5+6*x^4+54*x^3+26*x^2+20*x+9', 'y^2=77*x^6+31*x^5+11*x^4+24*x^3+71*x^2+7*x+67', 'y^2=46*x^6+53*x^5+8*x^4+12*x^3+68*x^2+70*x+63', 'y^2=51*x^6+73*x^5+75*x^3+20*x^2+26*x+42', 'y^2=7*x^6+2*x^5+53*x^4+7*x^3+7*x^2+x+8', 'y^2=67*x^6+74*x^5+54*x^4+46*x^3+70*x^2+51*x+59', 'y^2=64*x^6+41*x^5+68*x^4+36*x^3+13*x^2+15*x+56', 'y^2=32*x^6+77*x^5+7*x^4+10*x^3+54*x^2+58*x+3', 'y^2=2*x^6+7*x^5+31*x^4+29*x^3+31*x^2+31*x+10', 'y^2=15*x^6+19*x^5+5*x^4+64*x^3+48*x^2+63*x+44', 'y^2=32*x^6+45*x^5+54*x^4+48*x^3+74*x^2+74*x+67', 'y^2=43*x^6+54*x^5+20*x^4+x^3+51*x^2+24*x+72', 'y^2=21*x^6+32*x^5+30*x^4+3*x^3+x^2+33*x+33', 'y^2=22*x^6+18*x^5+20*x^4+32*x^3+73*x^2+46*x+7', 'y^2=54*x^6+8*x^5+77*x^4+68*x^3+39*x^2+14', 'y^2=62*x^6+20*x^5+9*x^4+61*x^3+62*x^2+55*x+60', 'y^2=43*x^6+12*x^5+13*x^4+4*x^3+44*x^2+23*x+19', 'y^2=40*x^6+31*x^5+61*x^4+52*x^3+6*x^2+50*x+63', 'y^2=71*x^6+21*x^5+45*x^4+27*x^3+47*x+58', 'y^2=65*x^6+8*x^5+63*x^4+67*x^3+5*x^2+x+26', 'y^2=40*x^6+12*x^5+77*x^4+29*x^3+78*x^2+16*x+48', 'y^2=61*x^6+18*x^5+63*x^4+47*x^3+76*x^2+20*x+39', 'y^2=78*x^6+3*x^5+65*x^4+64*x^3+45*x^2+67*x+39', 'y^2=40*x^6+50*x^5+57*x^4+33*x^3+26*x^2+40*x+22', 'y^2=2*x^6+31*x^5+47*x^4+19*x^3+69*x+56', 'y^2=24*x^6+49*x^5+50*x^4+17*x^3+40*x^2+5*x+31', 'y^2=44*x^6+45*x^5+39*x^4+62*x^3+71*x^2+3*x+17', 'y^2=71*x^6+23*x^5+76*x^4+31*x^3+15*x^2+15*x+76', 'y^2=45*x^6+39*x^5+7*x^4+3*x^3+26*x^2+70*x+69', 'y^2=34*x^6+3*x^5+62*x^4+41*x^3+15*x^2+41*x+65', 'y^2=68*x^6+71*x^5+24*x^4+75*x^3+65*x^2+7*x+61', 'y^2=9*x^6+23*x^5+57*x^4+48*x^2+17*x+54', 'y^2=6*x^6+2*x^5+68*x^4+24*x^3+54*x^2+72*x+25', 'y^2=13*x^6+58*x^5+17*x^4+28*x^3+35*x^2+49*x+73', 'y^2=9*x^6+41*x^5+18*x^4+77*x^3+61*x^2+34*x+12', 'y^2=72*x^6+69*x^5+67*x^4+3*x^3+49*x^2+27*x+74', 'y^2=31*x^6+61*x^5+66*x^4+26*x^3+56*x^2+70*x+5', 'y^2=4*x^6+43*x^5+64*x^4+14*x^3+70*x^2+21*x+78', 'y^2=74*x^6+75*x^5+14*x^4+66*x^3+70*x^2+5*x+17', 'y^2=57*x^6+13*x^5+19*x^3+70*x^2+31*x+1', 'y^2=21*x^6+77*x^5+12*x^4+37*x^3+6*x^2+46*x+34', 'y^2=12*x^6+20*x^5+68*x^4+22*x^3+74*x^2+43*x+38', 'y^2=64*x^6+14*x^5+58*x^4+31*x^3+67*x^2+3*x+71', 'y^2=5*x^6+70*x^5+11*x^4+54*x^3+10*x^2+24*x+1', 'y^2=12*x^6+67*x^5+12*x^4+78*x^3+17*x^2+24*x+10', 'y^2=33*x^6+49*x^5+62*x^4+5*x^3+47*x^2+2*x+4', 'y^2=73*x^6+35*x^5+75*x^4+22*x^3+59*x^2+70*x+6', 'y^2=21*x^6+25*x^5+21*x^4+44*x^3+74*x^2+42*x+57', 'y^2=62*x^6+14*x^5+38*x^4+5*x^3+77*x^2+6*x+64', 'y^2=5*x^6+75*x^5+37*x^4+66*x^3+39*x^2+32*x+61', 'y^2=49*x^6+27*x^5+33*x^4+6*x^3+53*x^2+30*x+6', 'y^2=16*x^6+65*x^5+47*x^4+73*x^3+x^2+39*x+68', 'y^2=57*x^6+63*x^5+77*x^4+37*x^3+10*x^2+21*x+58', 'y^2=3*x^6+47*x^5+27*x^4+61*x^3+14*x^2+63*x+76', 'y^2=6*x^6+56*x^5+4*x^3+43*x^2+30*x+15', 'y^2=58*x^6+75*x^5+17*x^4+51*x^3+51*x^2+56*x+32', 'y^2=27*x^6+20*x^5+58*x^4+14*x^3+65*x^2+11*x+50', 'y^2=43*x^6+44*x^5+40*x^4+66*x^3+2*x^2+16*x+18', 'y^2=46*x^6+18*x^5+31*x^4+23*x^3+8*x^2+41*x+3', 'y^2=5*x^6+38*x^5+52*x^4+29*x^3+3*x^2+45*x+56', 'y^2=52*x^6+10*x^5+78*x^4+4*x^3+76*x^2+75*x+69', 'y^2=42*x^6+27*x^5+63*x^4+44*x^3+44*x^2+38*x+11', 'y^2=65*x^6+72*x^5+14*x^4+19*x^3+77*x^2+69*x+50', 'y^2=34*x^6+17*x^5+66*x^4+x^3+61*x^2+38*x+18', 'y^2=22*x^6+59*x^5+63*x^4+76*x^3+32*x^2+45*x+64', 'y^2=25*x^6+63*x^5+24*x^4+5*x^3+66*x^2+73*x', 'y^2=4*x^6+9*x^5+8*x^4+28*x^3+51*x^2+60*x+57', 'y^2=31*x^6+41*x^5+22*x^4+13*x^3+14*x^2+45*x', 'y^2=21*x^6+27*x^5+63*x^4+10*x^3+36*x^2+48*x+54', 'y^2=x^6+3*x^5+5*x^4+27*x^3+30*x^2+34*x+63', 'y^2=37*x^6+40*x^5+15*x^4+59*x^3+28*x^2+4*x+21', 'y^2=50*x^6+44*x^5+45*x^4+29*x^3+30*x^2+2*x+36', 'y^2=61*x^6+20*x^5+x^4+47*x^3+6*x^2+46*x+6', 'y^2=77*x^6+19*x^5+49*x^4+65*x^3+35*x+24', 'y^2=38*x^6+41*x^5+66*x^4+56*x^3+29*x^2+63*x+50', 'y^2=10*x^6+27*x^5+47*x^4+59*x^3+78*x^2+39*x+32', 'y^2=29*x^6+20*x^5+60*x^4+57*x^3+77*x^2+9*x+68', 'y^2=x^6+17*x^5+19*x^4+3*x^3+66*x^2+16*x+44', 'y^2=66*x^6+19*x^5+44*x^4+62*x^3+69*x^2+68*x+3', 'y^2=59*x^6+21*x^5+69*x^4+8*x^3+12*x^2+13*x+67', 'y^2=3*x^6+24*x^5+46*x^4+37*x^3+66*x^2+13*x+50', 'y^2=30*x^6+29*x^5+55*x^4+18*x^3+47*x^2+38*x+32', 'y^2=65*x^6+42*x^5+12*x^4+5*x^3+39*x^2+15*x+70', 'y^2=50*x^6+68*x^5+48*x^4+57*x^3+7*x^2+47*x+30', 'y^2=28*x^6+74*x^5+69*x^4+77*x^3+10*x+8', 'y^2=53*x^6+46*x^5+19*x^4+20*x^3+54*x^2+26*x+6', 'y^2=72*x^6+50*x^5+29*x^3+52*x^2+66*x', 'y^2=56*x^6+30*x^5+18*x^4+21*x^3+17*x^2+31*x+73', 'y^2=56*x^6+66*x^5+22*x^4+33*x^3+26*x^2+9*x+74', 'y^2=66*x^6+32*x^5+66*x^4+19*x^3+49*x^2+14*x+13', 'y^2=7*x^6+21*x^5+36*x^4+69*x^3+26*x^2+70*x+61', 'y^2=27*x^6+48*x^5+13*x^4+65*x^3+53*x^2+39*x+31', 'y^2=31*x^6+67*x^5+55*x^4+56*x^3+9*x^2+65*x+26', 'y^2=28*x^6+72*x^5+23*x^4+52*x^3+65*x^2+20*x+21', 'y^2=53*x^6+36*x^5+67*x^4+62*x^3+27*x^2+57*x+14', 'y^2=50*x^5+51*x^4+48*x^3+7*x^2+12*x+77', 'y^2=37*x^6+78*x^5+44*x^4+77*x^3+23*x^2+7*x+7', 'y^2=24*x^6+51*x^5+5*x^4+12*x^3+4*x^2+66*x+32', 'y^2=72*x^6+28*x^5+27*x^3+73*x^2+30*x+51'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 8, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 2, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1', '2T1'], 'geometric_number_fields': ['2.0.267.1', '2.0.3.1'], 'geometric_splitting_field': '4.0.71289.1', 'geometric_splitting_polynomials': [[484, 22, 23, -1, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 112, 'is_cyclic': False, 'is_geometrically_simple': False, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 112, 'label': '2.79.ad_fa', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 6, 'newton_coelevation': 2, 'newton_elevation': 0, 'noncyclic_primes': [2], 'number_fields': ['2.0.267.1', '2.0.3.1'], 'p': 79, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -3, 130, -237, 6241], 'poly_str': '1 -3 130 -237 6241 ', 'primitive_models': [], 'q': 79, 'real_poly': [1, -3, -28], 'simple_distinct': ['1.79.ah', '1.79.e'], 'simple_factors': ['1.79.ahA', '1.79.eA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['11,-2*F^2-94*F+13*V-95', '2,3*F-3', '5,15*F-3*V+4'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.71289.1', 'splitting_polynomials': [[484, 22, 23, -1, 1]], 'twist_count': 12, 'twists': [['2.79.al_he', '2.6241.jr_bpjk', 2], ['2.79.d_fa', '2.6241.jr_bpjk', 2], ['2.79.l_he', '2.6241.jr_bpjk', 2], ['2.79.ay_kr', '2.493039.qq_akcfy', 3], ['2.79.g_cp', '2.493039.qq_akcfy', 3], ['2.79.au_jp', '2.243087455521.abeuns_bpnvfxhco', 6], ['2.79.ak_bn', '2.243087455521.abeuns_bpnvfxhco', 6], ['2.79.ag_cp', '2.243087455521.abeuns_bpnvfxhco', 6], ['2.79.k_bn', '2.243087455521.abeuns_bpnvfxhco', 6], ['2.79.u_jp', '2.243087455521.abeuns_bpnvfxhco', 6], ['2.79.y_kr', '2.243087455521.abeuns_bpnvfxhco', 6]], 'weak_equivalence_count': 8, 'zfv_index': 1210, 'zfv_index_factorization': [[2, 1], [5, 1], [11, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 80100, 'zfv_singular_count': 6, 'zfv_singular_primes': ['11,-2*F^2-94*F+13*V-95', '2,3*F-3', '5,15*F-3*V+4']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 92695
{'base_label': '2.79.ad_fa', 'extension_degree': 1, 'extension_label': '1.79.ah', 'multiplicity': 1}
-
id: 92696
{'base_label': '2.79.ad_fa', 'extension_degree': 1, 'extension_label': '1.79.e', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.267.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.79.ah', 'galois_group': '2T1', 'places': [['75', '1'], ['3', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.3.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.79.e', 'galois_group': '2T1', 'places': [['55', '1'], ['23', '1']]}