Invariants
| Base field: | $\F_{71}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 6 x + 71 x^{2} )( 1 + 8 x + 71 x^{2} )$ |
| $1 + 14 x + 190 x^{2} + 994 x^{3} + 5041 x^{4}$ | |
| Frobenius angles: | $\pm0.615871442562$, $\pm0.657448017853$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $64$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6240$ | $26357760$ | $127295532000$ | $645825848279040$ | $3255487083005196000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $86$ | $5226$ | $355658$ | $25414526$ | $1804364326$ | $128099166858$ | $9095118687706$ | $645753615576766$ | $45848500247202998$ | $3255243548677416426$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 64 curves (of which all are hyperelliptic):
- $y^2=45 x^6+51 x^5+61 x^4+43 x^3+61 x^2+51 x+45$
- $y^2=44 x^6+70 x^5+56 x^4+45 x^3+26 x^2+62 x+52$
- $y^2=13 x^6+28 x^5+38 x^4+56 x^3+38 x^2+28 x+13$
- $y^2=24 x^6+61 x^5+29 x^4+34 x^3+27 x^2+56 x+58$
- $y^2=54 x^6+6 x^5+12 x^4+37 x^3+20 x^2+64 x+37$
- $y^2=37 x^6+69 x^5+23 x^4+49 x^3+33 x^2+34 x+2$
- $y^2=65 x^5+70 x^4+2 x^3+31 x^2+56 x$
- $y^2=44 x^6+50 x^5+26 x^4+59 x^3+61 x^2+20 x+26$
- $y^2=19 x^6+43 x^5+25 x^4+23 x^3+10 x^2+58 x+37$
- $y^2=59 x^6+53 x^5+65 x^4+53 x^3+65 x^2+53 x+59$
- $y^2=60 x^6+41 x^5+22 x^4+33 x^3+22 x^2+41 x+60$
- $y^2=40 x^6+38 x^5+39 x^4+19 x^3+39 x^2+38 x+40$
- $y^2=24 x^6+43 x^5+54 x^4+38 x^3+57 x^2+10 x+18$
- $y^2=60 x^6+57 x^5+66 x^4+58 x^3+66 x^2+57 x+60$
- $y^2=3 x^6+52 x^5+20 x^4+51 x^3+36 x^2+35 x+5$
- $y^2=53 x^6+12 x^5+60 x^4+68 x^3+3 x^2+5 x+44$
- $y^2=16 x^6+39 x^5+19 x^4+68 x^3+19 x^2+39 x+16$
- $y^2=62 x^6+65 x^5+66 x^4+58 x^3+13 x^2+56 x+23$
- $y^2=60 x^6+47 x^5+8 x^4+32 x^3+2 x^2+34 x+32$
- $y^2=56 x^6+67 x^5+37 x^4+37 x^2+67 x+56$
- and 44 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$| The isogeny class factors as 1.71.g $\times$ 1.71.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.71.ao_hi | $2$ | (not in LMFDB) |
| 2.71.ac_dq | $2$ | (not in LMFDB) |
| 2.71.c_dq | $2$ | (not in LMFDB) |