-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 6240, 'abvar_counts': [6240, 26357760, 127295532000, 645825848279040, 3255487083005196000, 16409539644971945472000, 82721197319516217324152160, 416997677573416670389296168960, 2102084996523697298835996009372000, 10596610568798680116490220059651584000], 'abvar_counts_str': '6240 26357760 127295532000 645825848279040 3255487083005196000 16409539644971945472000 82721197319516217324152160 416997677573416670389296168960 2102084996523697298835996009372000 10596610568798680116490220059651584000 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.615871442562135, 0.657448017852543], 'center_dim': 4, 'cohen_macaulay_max': 2, 'curve_count': 86, 'curve_counts': [86, 5226, 355658, 25414526, 1804364326, 128099166858, 9095118687706, 645753615576766, 45848500247202998, 3255243548677416426], 'curve_counts_str': '86 5226 355658 25414526 1804364326 128099166858 9095118687706 645753615576766 45848500247202998 3255243548677416426 ', 'curves': ['y^2=45*x^6+51*x^5+61*x^4+43*x^3+61*x^2+51*x+45', 'y^2=44*x^6+70*x^5+56*x^4+45*x^3+26*x^2+62*x+52', 'y^2=13*x^6+28*x^5+38*x^4+56*x^3+38*x^2+28*x+13', 'y^2=24*x^6+61*x^5+29*x^4+34*x^3+27*x^2+56*x+58', 'y^2=54*x^6+6*x^5+12*x^4+37*x^3+20*x^2+64*x+37', 'y^2=37*x^6+69*x^5+23*x^4+49*x^3+33*x^2+34*x+2', 'y^2=65*x^5+70*x^4+2*x^3+31*x^2+56*x', 'y^2=44*x^6+50*x^5+26*x^4+59*x^3+61*x^2+20*x+26', 'y^2=19*x^6+43*x^5+25*x^4+23*x^3+10*x^2+58*x+37', 'y^2=59*x^6+53*x^5+65*x^4+53*x^3+65*x^2+53*x+59', 'y^2=60*x^6+41*x^5+22*x^4+33*x^3+22*x^2+41*x+60', 'y^2=40*x^6+38*x^5+39*x^4+19*x^3+39*x^2+38*x+40', 'y^2=24*x^6+43*x^5+54*x^4+38*x^3+57*x^2+10*x+18', 'y^2=60*x^6+57*x^5+66*x^4+58*x^3+66*x^2+57*x+60', 'y^2=3*x^6+52*x^5+20*x^4+51*x^3+36*x^2+35*x+5', 'y^2=53*x^6+12*x^5+60*x^4+68*x^3+3*x^2+5*x+44', 'y^2=16*x^6+39*x^5+19*x^4+68*x^3+19*x^2+39*x+16', 'y^2=62*x^6+65*x^5+66*x^4+58*x^3+13*x^2+56*x+23', 'y^2=60*x^6+47*x^5+8*x^4+32*x^3+2*x^2+34*x+32', 'y^2=56*x^6+67*x^5+37*x^4+37*x^2+67*x+56', 'y^2=38*x^6+69*x^5+20*x^4+20*x^3+20*x^2+69*x+38', 'y^2=43*x^6+24*x^5+39*x^4+43*x^3+53*x^2+32*x+50', 'y^2=58*x^6+22*x^5+2*x^4+17*x^3+43*x^2+52*x+30', 'y^2=35*x^6+46*x^5+47*x^4+25*x^3+67*x^2+21*x+59', 'y^2=57*x^6+55*x^5+37*x^4+34*x^3+37*x^2+55*x+57', 'y^2=52*x^6+23*x^5+62*x^4+57*x^3+62*x^2+23*x+52', 'y^2=12*x^6+28*x^5+15*x^4+20*x^3+27*x^2+68*x+20', 'y^2=54*x^6+18*x^5+23*x^4+44*x^3+23*x^2+18*x+54', 'y^2=14*x^6+16*x^5+17*x^4+68*x^3+13*x^2+58*x+67', 'y^2=29*x^6+42*x^5+18*x^4+22*x^3+18*x^2+42*x+29', 'y^2=19*x^6+55*x^5+31*x^4+43*x^3+46*x^2+47*x+40', 'y^2=64*x^6+56*x^5+54*x^4+55*x^3+54*x^2+56*x+64', 'y^2=3*x^6+33*x^5+48*x^4+51*x^3+48*x^2+33*x+3', 'y^2=36*x^6+17*x^5+45*x^4+23*x^3+45*x^2+17*x+36', 'y^2=49*x^6+44*x^5+49*x^4+35*x^3+49*x^2+44*x+49', 'y^2=35*x^6+3*x^5+43*x^4+37*x^3+43*x^2+3*x+35', 'y^2=32*x^6+36*x^5+13*x^4+61*x^3+13*x^2+36*x+32', 'y^2=65*x^6+2*x^5+22*x^4+69*x^3+22*x^2+2*x+65', 'y^2=42*x^6+29*x^5+29*x^4+36*x^3+29*x^2+29*x+42', 'y^2=40*x^6+4*x^5+58*x^4+19*x^3+8*x^2+20*x+8', 'y^2=8*x^6+34*x^5+59*x^4+12*x^3+59*x^2+34*x+8', 'y^2=39*x^6+21*x^5+55*x^4+16*x^3+39*x^2+13*x+28', 'y^2=64*x^6+40*x^5+14*x^4+61*x^3+14*x^2+40*x+64', 'y^2=50*x^6+36*x^5+49*x^4+49*x^3+49*x^2+36*x+50', 'y^2=54*x^6+23*x^5+54*x^4+62*x^3+5*x^2+44*x+25', 'y^2=3*x^6+67*x^5+35*x^4+24*x^3+51*x^2+61*x+16', 'y^2=9*x^6+32*x^5+13*x^4+53*x^3+13*x^2+32*x+9', 'y^2=8*x^6+2*x^5+51*x^4+27*x^3+51*x^2+2*x+8', 'y^2=48*x^6+25*x^5+44*x^4+28*x^3+14*x^2+15*x+4', 'y^2=14*x^6+44*x^4+50*x^3+44*x^2+14', 'y^2=68*x^6+64*x^5+11*x^4+37*x^3+63*x^2+45*x+33', 'y^2=49*x^6+65*x^5+63*x^4+26*x^3+39*x^2+46*x+12', 'y^2=67*x^6+57*x^5+10*x^4+3*x^3+30*x^2+16*x+34', 'y^2=12*x^6+69*x^5+4*x^4+28*x^3+54*x^2+26*x+24', 'y^2=49*x^6+59*x^5+45*x^4+41*x^3+24*x^2+7*x+10', 'y^2=2*x^6+48*x^5+22*x^4+29*x^3+69*x^2+18*x+8', 'y^2=15*x^6+55*x^5+67*x^4+34*x^2+51*x+27', 'y^2=9*x^6+53*x^5+42*x^4+35*x^3+39*x^2+62*x+27', 'y^2=57*x^6+18*x^5+65*x^4+68*x^3+65*x^2+18*x+57', 'y^2=19*x^6+39*x^5+70*x^4+51*x^3+70*x^2+39*x+19', 'y^2=56*x^6+27*x^5+53*x^4+3*x^3+53*x^2+27*x+56', 'y^2=58*x^6+7*x^5+33*x^4+39*x^3+33*x^2+7*x+58', 'y^2=13*x^6+25*x^5+9*x^4+9*x^3+9*x^2+25*x+13', 'y^2=59*x^6+4*x^5+x^4+69*x^3+x^2+4*x+59'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 6, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 2, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1', '2T1'], 'geometric_number_fields': ['2.0.248.1', '2.0.55.1'], 'geometric_splitting_field': '4.0.186049600.3', 'geometric_splitting_polynomials': [[2366, -152, 153, -2, 1]], 'group_structure_count': 4, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 64, 'is_geometrically_simple': False, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 64, 'label': '2.71.o_hi', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.248.1', '2.0.55.1'], 'p': 71, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 14, 190, 994, 5041], 'poly_str': '1 14 190 994 5041 ', 'primitive_models': [], 'q': 71, 'real_poly': [1, 14, 48], 'simple_distinct': ['1.71.g', '1.71.i'], 'simple_factors': ['1.71.gA', '1.71.iA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['2,F-5'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.186049600.3', 'splitting_polynomials': [[2366, -152, 153, -2, 1]], 'twist_count': 4, 'twists': [['2.71.ao_hi', '2.5041.hc_bbdu', 2], ['2.71.ac_dq', '2.5041.hc_bbdu', 2], ['2.71.c_dq', '2.5041.hc_bbdu', 2]], 'weak_equivalence_count': 7, 'zfv_index': 8, 'zfv_index_factorization': [[2, 3]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 54560, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,F-5']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 76084
{'base_label': '2.71.o_hi', 'extension_degree': 1, 'extension_label': '1.71.g', 'multiplicity': 1}
-
id: 76085
{'base_label': '2.71.o_hi', 'extension_degree': 1, 'extension_label': '1.71.i', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.248.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.71.g', 'galois_group': '2T1', 'places': [['3', '1'], ['68', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.55.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.71.i', 'galois_group': '2T1', 'places': [['37', '1'], ['33', '1']]}