# Stored data for abelian variety isogeny class 2.71.o_hi, downloaded from the LMFDB on 24 October 2025. {"abvar_count": 6240, "abvar_counts": [6240, 26357760, 127295532000, 645825848279040, 3255487083005196000, 16409539644971945472000, 82721197319516217324152160, 416997677573416670389296168960, 2102084996523697298835996009372000, 10596610568798680116490220059651584000], "abvar_counts_str": "6240 26357760 127295532000 645825848279040 3255487083005196000 16409539644971945472000 82721197319516217324152160 416997677573416670389296168960 2102084996523697298835996009372000 10596610568798680116490220059651584000 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.615871442562135, 0.657448017852543], "center_dim": 4, "cohen_macaulay_max": 2, "curve_count": 86, "curve_counts": [86, 5226, 355658, 25414526, 1804364326, 128099166858, 9095118687706, 645753615576766, 45848500247202998, 3255243548677416426], "curve_counts_str": "86 5226 355658 25414526 1804364326 128099166858 9095118687706 645753615576766 45848500247202998 3255243548677416426 ", "curves": ["y^2=45*x^6+51*x^5+61*x^4+43*x^3+61*x^2+51*x+45", "y^2=44*x^6+70*x^5+56*x^4+45*x^3+26*x^2+62*x+52", "y^2=13*x^6+28*x^5+38*x^4+56*x^3+38*x^2+28*x+13", "y^2=24*x^6+61*x^5+29*x^4+34*x^3+27*x^2+56*x+58", "y^2=54*x^6+6*x^5+12*x^4+37*x^3+20*x^2+64*x+37", "y^2=37*x^6+69*x^5+23*x^4+49*x^3+33*x^2+34*x+2", "y^2=65*x^5+70*x^4+2*x^3+31*x^2+56*x", "y^2=44*x^6+50*x^5+26*x^4+59*x^3+61*x^2+20*x+26", "y^2=19*x^6+43*x^5+25*x^4+23*x^3+10*x^2+58*x+37", "y^2=59*x^6+53*x^5+65*x^4+53*x^3+65*x^2+53*x+59", "y^2=60*x^6+41*x^5+22*x^4+33*x^3+22*x^2+41*x+60", "y^2=40*x^6+38*x^5+39*x^4+19*x^3+39*x^2+38*x+40", "y^2=24*x^6+43*x^5+54*x^4+38*x^3+57*x^2+10*x+18", "y^2=60*x^6+57*x^5+66*x^4+58*x^3+66*x^2+57*x+60", "y^2=3*x^6+52*x^5+20*x^4+51*x^3+36*x^2+35*x+5", "y^2=53*x^6+12*x^5+60*x^4+68*x^3+3*x^2+5*x+44", "y^2=16*x^6+39*x^5+19*x^4+68*x^3+19*x^2+39*x+16", "y^2=62*x^6+65*x^5+66*x^4+58*x^3+13*x^2+56*x+23", "y^2=60*x^6+47*x^5+8*x^4+32*x^3+2*x^2+34*x+32", "y^2=56*x^6+67*x^5+37*x^4+37*x^2+67*x+56", "y^2=38*x^6+69*x^5+20*x^4+20*x^3+20*x^2+69*x+38", "y^2=43*x^6+24*x^5+39*x^4+43*x^3+53*x^2+32*x+50", "y^2=58*x^6+22*x^5+2*x^4+17*x^3+43*x^2+52*x+30", "y^2=35*x^6+46*x^5+47*x^4+25*x^3+67*x^2+21*x+59", "y^2=57*x^6+55*x^5+37*x^4+34*x^3+37*x^2+55*x+57", "y^2=52*x^6+23*x^5+62*x^4+57*x^3+62*x^2+23*x+52", "y^2=12*x^6+28*x^5+15*x^4+20*x^3+27*x^2+68*x+20", "y^2=54*x^6+18*x^5+23*x^4+44*x^3+23*x^2+18*x+54", "y^2=14*x^6+16*x^5+17*x^4+68*x^3+13*x^2+58*x+67", "y^2=29*x^6+42*x^5+18*x^4+22*x^3+18*x^2+42*x+29", "y^2=19*x^6+55*x^5+31*x^4+43*x^3+46*x^2+47*x+40", "y^2=64*x^6+56*x^5+54*x^4+55*x^3+54*x^2+56*x+64", "y^2=3*x^6+33*x^5+48*x^4+51*x^3+48*x^2+33*x+3", "y^2=36*x^6+17*x^5+45*x^4+23*x^3+45*x^2+17*x+36", "y^2=49*x^6+44*x^5+49*x^4+35*x^3+49*x^2+44*x+49", "y^2=35*x^6+3*x^5+43*x^4+37*x^3+43*x^2+3*x+35", "y^2=32*x^6+36*x^5+13*x^4+61*x^3+13*x^2+36*x+32", "y^2=65*x^6+2*x^5+22*x^4+69*x^3+22*x^2+2*x+65", "y^2=42*x^6+29*x^5+29*x^4+36*x^3+29*x^2+29*x+42", "y^2=40*x^6+4*x^5+58*x^4+19*x^3+8*x^2+20*x+8", "y^2=8*x^6+34*x^5+59*x^4+12*x^3+59*x^2+34*x+8", "y^2=39*x^6+21*x^5+55*x^4+16*x^3+39*x^2+13*x+28", "y^2=64*x^6+40*x^5+14*x^4+61*x^3+14*x^2+40*x+64", "y^2=50*x^6+36*x^5+49*x^4+49*x^3+49*x^2+36*x+50", "y^2=54*x^6+23*x^5+54*x^4+62*x^3+5*x^2+44*x+25", "y^2=3*x^6+67*x^5+35*x^4+24*x^3+51*x^2+61*x+16", "y^2=9*x^6+32*x^5+13*x^4+53*x^3+13*x^2+32*x+9", "y^2=8*x^6+2*x^5+51*x^4+27*x^3+51*x^2+2*x+8", "y^2=48*x^6+25*x^5+44*x^4+28*x^3+14*x^2+15*x+4", "y^2=14*x^6+44*x^4+50*x^3+44*x^2+14", "y^2=68*x^6+64*x^5+11*x^4+37*x^3+63*x^2+45*x+33", "y^2=49*x^6+65*x^5+63*x^4+26*x^3+39*x^2+46*x+12", "y^2=67*x^6+57*x^5+10*x^4+3*x^3+30*x^2+16*x+34", "y^2=12*x^6+69*x^5+4*x^4+28*x^3+54*x^2+26*x+24", "y^2=49*x^6+59*x^5+45*x^4+41*x^3+24*x^2+7*x+10", "y^2=2*x^6+48*x^5+22*x^4+29*x^3+69*x^2+18*x+8", "y^2=15*x^6+55*x^5+67*x^4+34*x^2+51*x+27", "y^2=9*x^6+53*x^5+42*x^4+35*x^3+39*x^2+62*x+27", "y^2=57*x^6+18*x^5+65*x^4+68*x^3+65*x^2+18*x+57", "y^2=19*x^6+39*x^5+70*x^4+51*x^3+70*x^2+39*x+19", "y^2=56*x^6+27*x^5+53*x^4+3*x^3+53*x^2+27*x+56", "y^2=58*x^6+7*x^5+33*x^4+39*x^3+33*x^2+7*x+58", "y^2=13*x^6+25*x^5+9*x^4+9*x^3+9*x^2+25*x+13", "y^2=59*x^6+4*x^5+x^4+69*x^3+x^2+4*x+59"], "dim1_distinct": 2, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 6, "g": 2, "galois_groups": ["2T1", "2T1"], "geom_dim1_distinct": 2, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1", "2T1"], "geometric_number_fields": ["2.0.248.1", "2.0.55.1"], "geometric_splitting_field": "4.0.186049600.3", "geometric_splitting_polynomials": [[2366, -152, 153, -2, 1]], "group_structure_count": 4, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 64, "is_geometrically_simple": false, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": false, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 64, "label": "2.71.o_hi", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.248.1", "2.0.55.1"], "p": 71, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 14, 190, 994, 5041], "poly_str": "1 14 190 994 5041 ", "primitive_models": [], "q": 71, "real_poly": [1, 14, 48], "simple_distinct": ["1.71.g", "1.71.i"], "simple_factors": ["1.71.gA", "1.71.iA"], "simple_multiplicities": [1, 1], "singular_primes": ["2,F-5"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.186049600.3", "splitting_polynomials": [[2366, -152, 153, -2, 1]], "twist_count": 4, "twists": [["2.71.ao_hi", "2.5041.hc_bbdu", 2], ["2.71.ac_dq", "2.5041.hc_bbdu", 2], ["2.71.c_dq", "2.5041.hc_bbdu", 2]], "weak_equivalence_count": 7, "zfv_index": 8, "zfv_index_factorization": [[2, 3]], "zfv_is_bass": false, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 54560, "zfv_singular_count": 2, "zfv_singular_primes": ["2,F-5"]}