Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 20 x + 213 x^{2} - 1180 x^{3} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.206682321430$, $\pm0.331349035345$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.379025.1 |
Galois group: | $D_{4}$ |
Jacobians: | $50$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2495$ | $12213025$ | $42435918080$ | $146946640492025$ | $511136699773927375$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $40$ | $3508$ | $206620$ | $12126948$ | $714952200$ | $42180422518$ | $2488650314680$ | $146830437424068$ | $8662995836043460$ | $511116752692863348$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 50 curves (of which all are hyperelliptic):
- $y^2=39 x^6+26 x^5+45 x^4+8 x^3+42 x^2+30 x+34$
- $y^2=34 x^6+5 x^5+21 x^4+58 x^3+2 x^2+33 x+37$
- $y^2=47 x^6+19 x^5+17 x^4+26 x^3+40 x^2+27 x+11$
- $y^2=55 x^6+38 x^5+14 x^4+49 x^3+10 x^2+6 x+37$
- $y^2=57 x^6+34 x^5+46 x^4+14 x^3+36 x^2+54 x+55$
- $y^2=3 x^6+37 x^5+33 x^4+18 x^2+48 x+50$
- $y^2=18 x^6+26 x^5+36 x^4+5 x^3+48 x^2+23 x+25$
- $y^2=4 x^6+27 x^5+18 x^4+35 x^3+39 x^2+11 x+52$
- $y^2=55 x^6+47 x^5+31 x^4+45 x^3+23 x^2+21 x+38$
- $y^2=14 x^6+39 x^5+2 x^4+29 x^3+36 x^2+10 x+23$
- $y^2=12 x^6+38 x^5+24 x^4+41 x^3+41 x^2+55 x+37$
- $y^2=15 x^6+35 x^5+36 x^4+57 x^3+34 x^2+18 x+27$
- $y^2=13 x^6+x^5+17 x^4+45 x^3+9 x^2+37 x+17$
- $y^2=33 x^6+13 x^5+28 x^4+56 x^3+32 x^2+46 x+13$
- $y^2=2 x^6+13 x^5+56 x^4+57 x^3+52 x^2+14 x+30$
- $y^2=38 x^6+31 x^5+15 x^4+54 x^3+43 x^2+36 x+56$
- $y^2=33 x^6+5 x^5+32 x^4+20 x^3+5 x^2+57 x+42$
- $y^2=9 x^6+5 x^5+3 x^4+52 x^3+23 x^2+10 x+27$
- $y^2=4 x^6+37 x^5+33 x^4+20 x^3+13 x^2+53 x+42$
- $y^2=45 x^6+27 x^5+35 x^4+23 x^3+36 x^2+37 x+56$
- and 30 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is 4.0.379025.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.u_if | $2$ | (not in LMFDB) |