# Stored data for abelian variety isogeny class 2.59.au_if, downloaded from the LMFDB on 03 September 2025. {"abvar_count": 2495, "abvar_counts": [2495, 12213025, 42435918080, 146946640492025, 511136699773927375, 1779192730931400294400, 6193383300825252073216055, 21559177380609798133659106025, 75047496704669618827873685285120, 261240335193943176712009124416890625], "abvar_counts_str": "2495 12213025 42435918080 146946640492025 511136699773927375 1779192730931400294400 6193383300825252073216055 21559177380609798133659106025 75047496704669618827873685285120 261240335193943176712009124416890625 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.206682321429809, 0.331349035345162], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 40, "curve_counts": [40, 3508, 206620, 12126948, 714952200, 42180422518, 2488650314680, 146830437424068, 8662995836043460, 511116752692863348], "curve_counts_str": "40 3508 206620 12126948 714952200 42180422518 2488650314680 146830437424068 8662995836043460 511116752692863348 ", "curves": ["y^2=39*x^6+26*x^5+45*x^4+8*x^3+42*x^2+30*x+34", "y^2=34*x^6+5*x^5+21*x^4+58*x^3+2*x^2+33*x+37", "y^2=47*x^6+19*x^5+17*x^4+26*x^3+40*x^2+27*x+11", "y^2=55*x^6+38*x^5+14*x^4+49*x^3+10*x^2+6*x+37", "y^2=57*x^6+34*x^5+46*x^4+14*x^3+36*x^2+54*x+55", "y^2=3*x^6+37*x^5+33*x^4+18*x^2+48*x+50", "y^2=18*x^6+26*x^5+36*x^4+5*x^3+48*x^2+23*x+25", "y^2=4*x^6+27*x^5+18*x^4+35*x^3+39*x^2+11*x+52", "y^2=55*x^6+47*x^5+31*x^4+45*x^3+23*x^2+21*x+38", "y^2=14*x^6+39*x^5+2*x^4+29*x^3+36*x^2+10*x+23", "y^2=12*x^6+38*x^5+24*x^4+41*x^3+41*x^2+55*x+37", "y^2=15*x^6+35*x^5+36*x^4+57*x^3+34*x^2+18*x+27", "y^2=13*x^6+x^5+17*x^4+45*x^3+9*x^2+37*x+17", "y^2=33*x^6+13*x^5+28*x^4+56*x^3+32*x^2+46*x+13", "y^2=2*x^6+13*x^5+56*x^4+57*x^3+52*x^2+14*x+30", "y^2=38*x^6+31*x^5+15*x^4+54*x^3+43*x^2+36*x+56", "y^2=33*x^6+5*x^5+32*x^4+20*x^3+5*x^2+57*x+42", "y^2=9*x^6+5*x^5+3*x^4+52*x^3+23*x^2+10*x+27", "y^2=4*x^6+37*x^5+33*x^4+20*x^3+13*x^2+53*x+42", "y^2=45*x^6+27*x^5+35*x^4+23*x^3+36*x^2+37*x+56", "y^2=54*x^6+10*x^5+3*x^4+26*x^3+31*x^2+5*x+34", "y^2=35*x^6+53*x^5+41*x^4+29*x^3+39*x^2+56*x+47", "y^2=28*x^6+9*x^5+14*x^4+2*x^3+40*x^2+57*x+23", "y^2=30*x^6+30*x^5+27*x^4+51*x^3+35*x^2+29*x+16", "y^2=53*x^6+x^5+55*x^4+57*x^3+49*x^2+5*x+55", "y^2=31*x^6+53*x^5+46*x^4+13*x^3+50*x+49", "y^2=15*x^6+10*x^5+31*x^4+49*x^3+x^2+39*x+5", "y^2=43*x^6+25*x^5+26*x^4+12*x^3+50*x^2+46*x+52", "y^2=18*x^6+2*x^5+11*x^4+54*x^3+16*x^2+47*x+37", "y^2=2*x^6+52*x^5+45*x^4+37*x^3+43*x^2+5*x+3", "y^2=35*x^6+56*x^5+53*x^4+57*x^3+18*x^2+10*x+55", "y^2=44*x^6+18*x^5+53*x^4+53*x^3+56*x^2+11", "y^2=38*x^6+17*x^5+47*x^4+18*x^3+50*x^2+31*x+2", "y^2=58*x^6+52*x^5+38*x^4+16*x^3+7*x^2+34*x+33", "y^2=48*x^6+57*x^5+23*x^4+48*x^3+11*x^2+16*x+32", "y^2=56*x^6+x^5+36*x^4+12*x^2+20*x+37", "y^2=55*x^6+34*x^5+50*x^4+35*x^3+32*x^2+29*x+13", "y^2=33*x^6+19*x^5+41*x^4+3*x^3+5*x^2+42*x+55", "y^2=13*x^6+55*x^5+4*x^4+20*x^3+26*x^2+9*x+4", "y^2=56*x^6+26*x^5+27*x^4+36*x^3+45*x^2+4*x+41", "y^2=11*x^6+31*x^5+39*x^4+46*x^2+23*x+52", "y^2=29*x^6+49*x^5+12*x^4+29*x^3+27*x^2+40*x+33", "y^2=43*x^6+3*x^5+52*x^4+47*x^3+52*x^2+25*x+40", "y^2=2*x^6+16*x^5+36*x^4+36*x^3+x^2+9*x+16", "y^2=46*x^6+24*x^5+36*x^4+29*x^3+16*x^2+2*x+37", "y^2=10*x^6+32*x^5+46*x^4+17*x^3+32*x^2+22*x+23", "y^2=33*x^6+x^5+43*x^4+25*x^3+15*x^2+57*x+5", "y^2=16*x^6+4*x^5+36*x^4+6*x^3+58*x^2+51*x+24", "y^2=43*x^6+24*x^5+6*x^4+52*x^3+51*x^2+40*x+2", "y^2=10*x^6+46*x^5+11*x^4+42*x^3+42*x^2+36*x+37"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 2, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.379025.1"], "geometric_splitting_field": "4.0.379025.1", "geometric_splitting_polynomials": [[964, -66, 67, -2, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 50, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 50, "label": "2.59.au_if", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.379025.1"], "p": 59, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -20, 213, -1180, 3481], "poly_str": "1 -20 213 -1180 3481 ", "primitive_models": [], "q": 59, "real_poly": [1, -20, 95], "simple_distinct": ["2.59.au_if"], "simple_factors": ["2.59.au_ifA"], "simple_multiplicities": [1], "singular_primes": ["2,17*F+5*V-97"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.379025.1", "splitting_polynomials": [[964, -66, 67, -2, 1]], "twist_count": 2, "twists": [["2.59.u_if", "2.3481.ba_hpj", 2]], "weak_equivalence_count": 2, "zfv_index": 4, "zfv_index_factorization": [[2, 2]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 2, "zfv_plus_index_factorization": [[2, 1]], "zfv_plus_norm": 15161, "zfv_singular_count": 2, "zfv_singular_primes": ["2,17*F+5*V-97"]}