-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 2495, 'abvar_counts': [2495, 12213025, 42435918080, 146946640492025, 511136699773927375, 1779192730931400294400, 6193383300825252073216055, 21559177380609798133659106025, 75047496704669618827873685285120, 261240335193943176712009124416890625], 'abvar_counts_str': '2495 12213025 42435918080 146946640492025 511136699773927375 1779192730931400294400 6193383300825252073216055 21559177380609798133659106025 75047496704669618827873685285120 261240335193943176712009124416890625 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.206682321429809, 0.331349035345162], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 40, 'curve_counts': [40, 3508, 206620, 12126948, 714952200, 42180422518, 2488650314680, 146830437424068, 8662995836043460, 511116752692863348], 'curve_counts_str': '40 3508 206620 12126948 714952200 42180422518 2488650314680 146830437424068 8662995836043460 511116752692863348 ', 'curves': ['y^2=39*x^6+26*x^5+45*x^4+8*x^3+42*x^2+30*x+34', 'y^2=34*x^6+5*x^5+21*x^4+58*x^3+2*x^2+33*x+37', 'y^2=47*x^6+19*x^5+17*x^4+26*x^3+40*x^2+27*x+11', 'y^2=55*x^6+38*x^5+14*x^4+49*x^3+10*x^2+6*x+37', 'y^2=57*x^6+34*x^5+46*x^4+14*x^3+36*x^2+54*x+55', 'y^2=3*x^6+37*x^5+33*x^4+18*x^2+48*x+50', 'y^2=18*x^6+26*x^5+36*x^4+5*x^3+48*x^2+23*x+25', 'y^2=4*x^6+27*x^5+18*x^4+35*x^3+39*x^2+11*x+52', 'y^2=55*x^6+47*x^5+31*x^4+45*x^3+23*x^2+21*x+38', 'y^2=14*x^6+39*x^5+2*x^4+29*x^3+36*x^2+10*x+23', 'y^2=12*x^6+38*x^5+24*x^4+41*x^3+41*x^2+55*x+37', 'y^2=15*x^6+35*x^5+36*x^4+57*x^3+34*x^2+18*x+27', 'y^2=13*x^6+x^5+17*x^4+45*x^3+9*x^2+37*x+17', 'y^2=33*x^6+13*x^5+28*x^4+56*x^3+32*x^2+46*x+13', 'y^2=2*x^6+13*x^5+56*x^4+57*x^3+52*x^2+14*x+30', 'y^2=38*x^6+31*x^5+15*x^4+54*x^3+43*x^2+36*x+56', 'y^2=33*x^6+5*x^5+32*x^4+20*x^3+5*x^2+57*x+42', 'y^2=9*x^6+5*x^5+3*x^4+52*x^3+23*x^2+10*x+27', 'y^2=4*x^6+37*x^5+33*x^4+20*x^3+13*x^2+53*x+42', 'y^2=45*x^6+27*x^5+35*x^4+23*x^3+36*x^2+37*x+56', 'y^2=54*x^6+10*x^5+3*x^4+26*x^3+31*x^2+5*x+34', 'y^2=35*x^6+53*x^5+41*x^4+29*x^3+39*x^2+56*x+47', 'y^2=28*x^6+9*x^5+14*x^4+2*x^3+40*x^2+57*x+23', 'y^2=30*x^6+30*x^5+27*x^4+51*x^3+35*x^2+29*x+16', 'y^2=53*x^6+x^5+55*x^4+57*x^3+49*x^2+5*x+55', 'y^2=31*x^6+53*x^5+46*x^4+13*x^3+50*x+49', 'y^2=15*x^6+10*x^5+31*x^4+49*x^3+x^2+39*x+5', 'y^2=43*x^6+25*x^5+26*x^4+12*x^3+50*x^2+46*x+52', 'y^2=18*x^6+2*x^5+11*x^4+54*x^3+16*x^2+47*x+37', 'y^2=2*x^6+52*x^5+45*x^4+37*x^3+43*x^2+5*x+3', 'y^2=35*x^6+56*x^5+53*x^4+57*x^3+18*x^2+10*x+55', 'y^2=44*x^6+18*x^5+53*x^4+53*x^3+56*x^2+11', 'y^2=38*x^6+17*x^5+47*x^4+18*x^3+50*x^2+31*x+2', 'y^2=58*x^6+52*x^5+38*x^4+16*x^3+7*x^2+34*x+33', 'y^2=48*x^6+57*x^5+23*x^4+48*x^3+11*x^2+16*x+32', 'y^2=56*x^6+x^5+36*x^4+12*x^2+20*x+37', 'y^2=55*x^6+34*x^5+50*x^4+35*x^3+32*x^2+29*x+13', 'y^2=33*x^6+19*x^5+41*x^4+3*x^3+5*x^2+42*x+55', 'y^2=13*x^6+55*x^5+4*x^4+20*x^3+26*x^2+9*x+4', 'y^2=56*x^6+26*x^5+27*x^4+36*x^3+45*x^2+4*x+41', 'y^2=11*x^6+31*x^5+39*x^4+46*x^2+23*x+52', 'y^2=29*x^6+49*x^5+12*x^4+29*x^3+27*x^2+40*x+33', 'y^2=43*x^6+3*x^5+52*x^4+47*x^3+52*x^2+25*x+40', 'y^2=2*x^6+16*x^5+36*x^4+36*x^3+x^2+9*x+16', 'y^2=46*x^6+24*x^5+36*x^4+29*x^3+16*x^2+2*x+37', 'y^2=10*x^6+32*x^5+46*x^4+17*x^3+32*x^2+22*x+23', 'y^2=33*x^6+x^5+43*x^4+25*x^3+15*x^2+57*x+5', 'y^2=16*x^6+4*x^5+36*x^4+6*x^3+58*x^2+51*x+24', 'y^2=43*x^6+24*x^5+6*x^4+52*x^3+51*x^2+40*x+2', 'y^2=10*x^6+46*x^5+11*x^4+42*x^3+42*x^2+36*x+37'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 2, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.379025.1'], 'geometric_splitting_field': '4.0.379025.1', 'geometric_splitting_polynomials': [[964, -66, 67, -2, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 50, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 50, 'label': '2.59.au_if', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.379025.1'], 'p': 59, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -20, 213, -1180, 3481], 'poly_str': '1 -20 213 -1180 3481 ', 'primitive_models': [], 'q': 59, 'real_poly': [1, -20, 95], 'simple_distinct': ['2.59.au_if'], 'simple_factors': ['2.59.au_ifA'], 'simple_multiplicities': [1], 'singular_primes': ['2,17*F+5*V-97'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.379025.1', 'splitting_polynomials': [[964, -66, 67, -2, 1]], 'twist_count': 2, 'twists': [['2.59.u_if', '2.3481.ba_hpj', 2]], 'weak_equivalence_count': 2, 'zfv_index': 4, 'zfv_index_factorization': [[2, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 2, 'zfv_plus_index_factorization': [[2, 1]], 'zfv_plus_norm': 15161, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,17*F+5*V-97']}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.59.au_if', 'extension_degree': 1, 'extension_label': '2.59.au_if', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.379025.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.59.au_if', 'galois_group': '4T3', 'places': [['20', '1', '0', '0'], ['28', '1', '0', '0'], ['38', '1', '0', '0'], ['30', '1', '0', '0']]}