Invariants
This isogeny class is simple and geometrically simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$A(\F_{q^r})$ |
$10283$ |
$164353189$ |
$2086465708691$ |
$26588015109316661$ |
$339457070599663966768$ |
Point counts of the curve
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
$C(\F_{q^r})$ |
$89$ |
$12871$ |
$1446023$ |
$163069275$ |
$18424369794$ |
$2081951786647$ |
$235260564362843$ |
$26584442095702419$ |
$3004041936093090149$ |
$339456738930117034686$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 96 curves (of which all are hyperelliptic):
- $y^2=80 x^6+89 x^5+93 x^4+53 x^3+58 x^2+96 x+39$
- $y^2=20 x^6+45 x^5+109 x^4+81 x^3+89 x^2+71 x+39$
- $y^2=101 x^6+54 x^5+109 x^4+10 x^3+98 x^2+107 x+42$
- $y^2=59 x^6+106 x^5+29 x^4+50 x^3+34 x^2+32 x+67$
- $y^2=58 x^6+35 x^5+21 x^4+15 x^3+72 x^2+79 x+101$
- $y^2=65 x^6+33 x^5+19 x^4+51 x^3+70 x^2+17 x+107$
- $y^2=89 x^6+94 x^5+47 x^4+14 x^3+111 x^2+12 x+26$
- $y^2=7 x^6+11 x^5+28 x^4+7 x^3+31 x^2+47 x+43$
- $y^2=92 x^6+80 x^5+87 x^4+5 x^3+83 x^2+4 x+68$
- $y^2=25 x^5+24 x^4+110 x^3+5 x^2+50 x+44$
- $y^2=39 x^6+91 x^5+34 x^4+55 x^3+12 x^2+9 x+2$
- $y^2=17 x^6+92 x^5+82 x^4+38 x^3+76 x^2+92 x+55$
- $y^2=21 x^6+7 x^5+101 x^4+91 x^3+39 x^2+54 x+104$
- $y^2=76 x^6+13 x^5+100 x^4+99 x^3+105 x^2+67 x+57$
- $y^2=35 x^6+16 x^5+39 x^4+3 x^3+63 x^2+57 x+30$
- $y^2=97 x^6+37 x^5+108 x^4+x^3+52 x^2+32 x$
- $y^2=68 x^6+73 x^5+58 x^4+54 x^3+96 x^2+94 x+7$
- $y^2=89 x^6+74 x^5+7 x^4+46 x^3+34 x^2+46 x+109$
- $y^2=41 x^5+46 x^4+34 x^3+65 x^2+69 x+6$
- $y^2=21 x^6+68 x^5+68 x^4+110 x^3+15 x^2+27 x+52$
- and 76 more
- $y^2=39 x^6+4 x^5+58 x^4+76 x^3+29 x^2+39 x+28$
- $y^2=5 x^6+97 x^5+64 x^4+111 x^3+27 x^2+93 x+76$
- $y^2=45 x^6+103 x^5+86 x^4+61 x^3+108 x^2+16 x+7$
- $y^2=38 x^6+35 x^5+4 x^4+64 x^3+14 x^2+67 x+72$
- $y^2=30 x^6+25 x^5+94 x^4+37 x^3+73 x^2+92 x+86$
- $y^2=71 x^6+83 x^5+65 x^4+105 x^3+35 x^2+97 x+6$
- $y^2=59 x^6+29 x^5+22 x^4+7 x^3+89 x^2+25 x+16$
- $y^2=57 x^6+62 x^5+17 x^4+58 x^3+65 x^2+19 x+46$
- $y^2=85 x^6+85 x^5+98 x^4+104 x^3+71 x^2+39 x+97$
- $y^2=7 x^6+58 x^5+106 x^4+28 x^3+33 x+34$
- $y^2=96 x^6+14 x^5+86 x^4+12 x^3+59 x^2+63 x+27$
- $y^2=76 x^6+27 x^5+56 x^4+99 x^2+103 x+93$
- $y^2=73 x^6+102 x^5+16 x^4+43 x^3+4 x^2+92 x+68$
- $y^2=62 x^6+17 x^5+110 x^4+102 x^3+109 x^2+73 x+30$
- $y^2=9 x^6+55 x^5+3 x^4+95 x^3+97 x^2+5 x+41$
- $y^2=5 x^6+73 x^5+88 x^4+104 x^3+70 x^2+16 x+68$
- $y^2=37 x^6+92 x^5+17 x^4+96 x^3+58 x^2+21 x+110$
- $y^2=45 x^6+53 x^5+7 x^4+32 x^3+67 x^2+95 x+57$
- $y^2=101 x^6+50 x^5+24 x^4+102 x^3+3 x^2+110 x+2$
- $y^2=101 x^6+22 x^5+5 x^4+77 x^3+78 x^2+71 x+79$
- $y^2=73 x^6+5 x^5+19 x^4+7 x^3+10 x^2+36 x+72$
- $y^2=23 x^6+51 x^5+98 x^4+57 x^3+80 x^2+12 x+29$
- $y^2=27 x^6+61 x^5+37 x^4+73 x^3+92 x^2+88 x+43$
- $y^2=74 x^6+14 x^5+41 x^4+74 x^3+111 x^2+66 x+60$
- $y^2=10 x^6+110 x^5+56 x^4+110 x^3+70 x^2+94 x+108$
- $y^2=64 x^6+68 x^5+80 x^4+57 x^3+2 x^2+100 x+84$
- $y^2=77 x^6+111 x^5+12 x^4+45 x^3+50 x^2+62 x+92$
- $y^2=68 x^6+7 x^5+36 x^4+60 x^3+66 x^2+96 x+60$
- $y^2=49 x^6+89 x^5+50 x^4+84 x^3+42 x^2+6 x+83$
- $y^2=42 x^6+7 x^5+83 x^4+79 x^3+39 x^2+89 x+87$
- $y^2=47 x^6+49 x^5+56 x^4+28 x^3+51 x^2+23 x+48$
- $y^2=73 x^6+70 x^5+65 x^4+110 x^2+101 x+13$
- $y^2=6 x^6+107 x^5+32 x^4+32 x^3+24 x^2+11 x+74$
- $y^2=96 x^6+13 x^5+24 x^4+90 x^3+86 x^2+51 x+54$
- $y^2=66 x^6+93 x^5+9 x^4+59 x^3+55 x^2+73 x+101$
- $y^2=69 x^6+54 x^5+91 x^4+23 x^3+52 x^2+21 x+45$
- $y^2=80 x^6+20 x^5+59 x^4+93 x^3+2 x^2+92 x+84$
- $y^2=16 x^6+3 x^5+62 x^4+16 x^3+30 x^2+41 x+103$
- $y^2=13 x^6+19 x^5+67 x^4+89 x^3+54 x^2+20 x+1$
- $y^2=13 x^6+50 x^5+80 x^4+29 x^3+98 x^2+24 x+88$
- $y^2=74 x^6+111 x^5+16 x^4+104 x^3+62 x^2+22 x+70$
- $y^2=18 x^6+111 x^5+85 x^4+95 x^3+45 x^2+72 x+21$
- $y^2=105 x^6+28 x^5+69 x^4+14 x^3+28 x^2+8 x+26$
- $y^2=101 x^6+64 x^5+62 x^4+91 x^3+68 x^2+17 x+58$
- $y^2=27 x^6+21 x^5+91 x^4+22 x^3+35 x^2+12 x+93$
- $y^2=8 x^6+59 x^5+107 x^4+53 x^3+63 x^2+11 x+14$
- $y^2=36 x^6+71 x^5+85 x^4+72 x^3+97 x^2+112 x+69$
- $y^2=48 x^6+62 x^5+6 x^4+8 x^3+65 x^2+36 x+42$
- $y^2=59 x^6+32 x^5+38 x^4+96 x^3+108 x^2+19 x+89$
- $y^2=94 x^6+25 x^5+34 x^4+29 x^3+95 x^2+47 x+65$
- $y^2=23 x^6+61 x^5+66 x^4+103 x^3+71 x^2+45 x+25$
- $y^2=26 x^6+8 x^5+66 x^4+66 x^3+23 x^2+30 x+21$
- $y^2=43 x^6+21 x^5+85 x^4+63 x^3+32 x^2+87 x+96$
- $y^2=85 x^6+68 x^5+92 x^4+47 x^3+57 x^2+12 x+48$
- $y^2=95 x^6+88 x^5+99 x^4+61 x^3+83 x^2+85 x+27$
- $y^2=26 x^6+7 x^5+23 x^4+34 x^3+15 x^2+86 x+33$
- $y^2=92 x^6+88 x^5+75 x^4+18 x^3+85 x^2+16 x+11$
- $y^2=65 x^6+84 x^5+74 x^4+39 x^3+106 x^2+74 x+75$
- $y^2=73 x^6+27 x^5+16 x^4+47 x^3+85 x^2+79 x+94$
- $y^2=42 x^6+80 x^5+111 x^4+21 x^3+50 x^2+106 x+25$
- $y^2=107 x^6+66 x^5+22 x^4+36 x^3+15 x^2+59 x+72$
- $y^2=80 x^6+94 x^5+9 x^4+60 x^3+33 x^2+112 x+22$
- $y^2=58 x^6+98 x^5+32 x^4+14 x^3+62 x^2+100 x+68$
- $y^2=10 x^6+41 x^5+49 x^4+32 x^3+105 x^2+82 x+24$
- $y^2=61 x^6+67 x^5+96 x^4+88 x^3+59 x^2+112 x+23$
- $y^2=23 x^6+18 x^5+89 x^4+63 x^3+46 x^2+14 x+2$
- $y^2=77 x^6+71 x^5+13 x^4+13 x^3+47 x^2+20 x+78$
- $y^2=84 x^6+85 x^5+103 x^4+5 x^3+75 x^2+107 x+75$
- $y^2=71 x^6+111 x^5+34 x^4+61 x^3+14 x^2+92 x+110$
- $y^2=70 x^6+111 x^5+101 x^4+99 x^3+64 x^2+64 x+80$
- $y^2=86 x^6+42 x^5+32 x^4+68 x^3+31 x^2+16 x+9$
- $y^2=77 x^6+71 x^5+58 x^4+72 x^3+53 x^2+63 x+29$
- $y^2=107 x^6+39 x^5+104 x^4+100 x^3+82 x^2+9 x+53$
- $y^2=70 x^6+4 x^5+17 x^4+36 x^3+14 x^2+71 x+87$
- $y^2=78 x^6+81 x^5+34 x^4+54 x^3+22 x^2+72 x+40$
- $y^2=94 x^6+19 x^5+11 x^4+72 x^3+86 x^2+74 x+38$
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
2.113.z_nz | $2$ | (not in LMFDB) |