Properties

Label 2.113.az_nz
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $1 - 25 x + 363 x^{2} - 2825 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.207827179752$, $\pm0.375379823670$
Angle rank:  $2$ (numerical)
Number field:  4.0.381952109.1
Galois group:  $D_{4}$
Jacobians:  $96$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10283$ $164353189$ $2086465708691$ $26588015109316661$ $339457070599663966768$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $89$ $12871$ $1446023$ $163069275$ $18424369794$ $2081951786647$ $235260564362843$ $26584442095702419$ $3004041936093090149$ $339456738930117034686$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 96 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113}$.

Endomorphism algebra over $\F_{113}$
The endomorphism algebra of this simple isogeny class is 4.0.381952109.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.z_nz$2$(not in LMFDB)