# Stored data for abelian variety isogeny class 2.113.az_nz, downloaded from the LMFDB on 07 October 2025. {"abvar_count": 10283, "abvar_counts": [10283, 164353189, 2086465708691, 26588015109316661, 339457070599663966768, 4334523171055069207195981, 55347529305335674994187653507, 706732557109773930864056221281989, 9024267959487099910866527623133257859, 115230877626151689846357543470274463853824], "abvar_counts_str": "10283 164353189 2086465708691 26588015109316661 339457070599663966768 4334523171055069207195981 55347529305335674994187653507 706732557109773930864056221281989 9024267959487099910866527623133257859 115230877626151689846357543470274463853824 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.207827179752231, 0.375379823670234], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 89, "curve_counts": [89, 12871, 1446023, 163069275, 18424369794, 2081951786647, 235260564362843, 26584442095702419, 3004041936093090149, 339456738930117034686], "curve_counts_str": "89 12871 1446023 163069275 18424369794 2081951786647 235260564362843 26584442095702419 3004041936093090149 339456738930117034686 ", "curves": ["y^2=80*x^6+89*x^5+93*x^4+53*x^3+58*x^2+96*x+39", "y^2=20*x^6+45*x^5+109*x^4+81*x^3+89*x^2+71*x+39", "y^2=101*x^6+54*x^5+109*x^4+10*x^3+98*x^2+107*x+42", "y^2=59*x^6+106*x^5+29*x^4+50*x^3+34*x^2+32*x+67", "y^2=58*x^6+35*x^5+21*x^4+15*x^3+72*x^2+79*x+101", "y^2=65*x^6+33*x^5+19*x^4+51*x^3+70*x^2+17*x+107", "y^2=89*x^6+94*x^5+47*x^4+14*x^3+111*x^2+12*x+26", "y^2=7*x^6+11*x^5+28*x^4+7*x^3+31*x^2+47*x+43", "y^2=92*x^6+80*x^5+87*x^4+5*x^3+83*x^2+4*x+68", "y^2=25*x^5+24*x^4+110*x^3+5*x^2+50*x+44", "y^2=39*x^6+91*x^5+34*x^4+55*x^3+12*x^2+9*x+2", "y^2=17*x^6+92*x^5+82*x^4+38*x^3+76*x^2+92*x+55", "y^2=21*x^6+7*x^5+101*x^4+91*x^3+39*x^2+54*x+104", "y^2=76*x^6+13*x^5+100*x^4+99*x^3+105*x^2+67*x+57", "y^2=35*x^6+16*x^5+39*x^4+3*x^3+63*x^2+57*x+30", "y^2=97*x^6+37*x^5+108*x^4+x^3+52*x^2+32*x", "y^2=68*x^6+73*x^5+58*x^4+54*x^3+96*x^2+94*x+7", "y^2=89*x^6+74*x^5+7*x^4+46*x^3+34*x^2+46*x+109", "y^2=41*x^5+46*x^4+34*x^3+65*x^2+69*x+6", "y^2=21*x^6+68*x^5+68*x^4+110*x^3+15*x^2+27*x+52", "y^2=39*x^6+4*x^5+58*x^4+76*x^3+29*x^2+39*x+28", "y^2=5*x^6+97*x^5+64*x^4+111*x^3+27*x^2+93*x+76", "y^2=45*x^6+103*x^5+86*x^4+61*x^3+108*x^2+16*x+7", "y^2=38*x^6+35*x^5+4*x^4+64*x^3+14*x^2+67*x+72", "y^2=30*x^6+25*x^5+94*x^4+37*x^3+73*x^2+92*x+86", "y^2=71*x^6+83*x^5+65*x^4+105*x^3+35*x^2+97*x+6", "y^2=59*x^6+29*x^5+22*x^4+7*x^3+89*x^2+25*x+16", "y^2=57*x^6+62*x^5+17*x^4+58*x^3+65*x^2+19*x+46", "y^2=85*x^6+85*x^5+98*x^4+104*x^3+71*x^2+39*x+97", "y^2=7*x^6+58*x^5+106*x^4+28*x^3+33*x+34", "y^2=96*x^6+14*x^5+86*x^4+12*x^3+59*x^2+63*x+27", "y^2=76*x^6+27*x^5+56*x^4+99*x^2+103*x+93", "y^2=73*x^6+102*x^5+16*x^4+43*x^3+4*x^2+92*x+68", "y^2=62*x^6+17*x^5+110*x^4+102*x^3+109*x^2+73*x+30", "y^2=9*x^6+55*x^5+3*x^4+95*x^3+97*x^2+5*x+41", "y^2=5*x^6+73*x^5+88*x^4+104*x^3+70*x^2+16*x+68", "y^2=37*x^6+92*x^5+17*x^4+96*x^3+58*x^2+21*x+110", "y^2=45*x^6+53*x^5+7*x^4+32*x^3+67*x^2+95*x+57", "y^2=101*x^6+50*x^5+24*x^4+102*x^3+3*x^2+110*x+2", "y^2=101*x^6+22*x^5+5*x^4+77*x^3+78*x^2+71*x+79", "y^2=73*x^6+5*x^5+19*x^4+7*x^3+10*x^2+36*x+72", "y^2=23*x^6+51*x^5+98*x^4+57*x^3+80*x^2+12*x+29", "y^2=27*x^6+61*x^5+37*x^4+73*x^3+92*x^2+88*x+43", "y^2=74*x^6+14*x^5+41*x^4+74*x^3+111*x^2+66*x+60", "y^2=10*x^6+110*x^5+56*x^4+110*x^3+70*x^2+94*x+108", "y^2=64*x^6+68*x^5+80*x^4+57*x^3+2*x^2+100*x+84", "y^2=77*x^6+111*x^5+12*x^4+45*x^3+50*x^2+62*x+92", "y^2=68*x^6+7*x^5+36*x^4+60*x^3+66*x^2+96*x+60", "y^2=49*x^6+89*x^5+50*x^4+84*x^3+42*x^2+6*x+83", "y^2=42*x^6+7*x^5+83*x^4+79*x^3+39*x^2+89*x+87", "y^2=47*x^6+49*x^5+56*x^4+28*x^3+51*x^2+23*x+48", "y^2=73*x^6+70*x^5+65*x^4+110*x^2+101*x+13", "y^2=6*x^6+107*x^5+32*x^4+32*x^3+24*x^2+11*x+74", "y^2=96*x^6+13*x^5+24*x^4+90*x^3+86*x^2+51*x+54", "y^2=66*x^6+93*x^5+9*x^4+59*x^3+55*x^2+73*x+101", "y^2=69*x^6+54*x^5+91*x^4+23*x^3+52*x^2+21*x+45", "y^2=80*x^6+20*x^5+59*x^4+93*x^3+2*x^2+92*x+84", "y^2=16*x^6+3*x^5+62*x^4+16*x^3+30*x^2+41*x+103", "y^2=13*x^6+19*x^5+67*x^4+89*x^3+54*x^2+20*x+1", "y^2=13*x^6+50*x^5+80*x^4+29*x^3+98*x^2+24*x+88", "y^2=74*x^6+111*x^5+16*x^4+104*x^3+62*x^2+22*x+70", "y^2=18*x^6+111*x^5+85*x^4+95*x^3+45*x^2+72*x+21", "y^2=105*x^6+28*x^5+69*x^4+14*x^3+28*x^2+8*x+26", "y^2=101*x^6+64*x^5+62*x^4+91*x^3+68*x^2+17*x+58", "y^2=27*x^6+21*x^5+91*x^4+22*x^3+35*x^2+12*x+93", "y^2=8*x^6+59*x^5+107*x^4+53*x^3+63*x^2+11*x+14", "y^2=36*x^6+71*x^5+85*x^4+72*x^3+97*x^2+112*x+69", "y^2=48*x^6+62*x^5+6*x^4+8*x^3+65*x^2+36*x+42", "y^2=59*x^6+32*x^5+38*x^4+96*x^3+108*x^2+19*x+89", "y^2=94*x^6+25*x^5+34*x^4+29*x^3+95*x^2+47*x+65", "y^2=23*x^6+61*x^5+66*x^4+103*x^3+71*x^2+45*x+25", "y^2=26*x^6+8*x^5+66*x^4+66*x^3+23*x^2+30*x+21", "y^2=43*x^6+21*x^5+85*x^4+63*x^3+32*x^2+87*x+96", "y^2=85*x^6+68*x^5+92*x^4+47*x^3+57*x^2+12*x+48", "y^2=95*x^6+88*x^5+99*x^4+61*x^3+83*x^2+85*x+27", "y^2=26*x^6+7*x^5+23*x^4+34*x^3+15*x^2+86*x+33", "y^2=92*x^6+88*x^5+75*x^4+18*x^3+85*x^2+16*x+11", "y^2=65*x^6+84*x^5+74*x^4+39*x^3+106*x^2+74*x+75", "y^2=73*x^6+27*x^5+16*x^4+47*x^3+85*x^2+79*x+94", "y^2=42*x^6+80*x^5+111*x^4+21*x^3+50*x^2+106*x+25", "y^2=107*x^6+66*x^5+22*x^4+36*x^3+15*x^2+59*x+72", "y^2=80*x^6+94*x^5+9*x^4+60*x^3+33*x^2+112*x+22", "y^2=58*x^6+98*x^5+32*x^4+14*x^3+62*x^2+100*x+68", "y^2=10*x^6+41*x^5+49*x^4+32*x^3+105*x^2+82*x+24", "y^2=61*x^6+67*x^5+96*x^4+88*x^3+59*x^2+112*x+23", "y^2=23*x^6+18*x^5+89*x^4+63*x^3+46*x^2+14*x+2", "y^2=77*x^6+71*x^5+13*x^4+13*x^3+47*x^2+20*x+78", "y^2=84*x^6+85*x^5+103*x^4+5*x^3+75*x^2+107*x+75", "y^2=71*x^6+111*x^5+34*x^4+61*x^3+14*x^2+92*x+110", "y^2=70*x^6+111*x^5+101*x^4+99*x^3+64*x^2+64*x+80", "y^2=86*x^6+42*x^5+32*x^4+68*x^3+31*x^2+16*x+9", "y^2=77*x^6+71*x^5+58*x^4+72*x^3+53*x^2+63*x+29", "y^2=107*x^6+39*x^5+104*x^4+100*x^3+82*x^2+9*x+53", "y^2=70*x^6+4*x^5+17*x^4+36*x^3+14*x^2+71*x+87", "y^2=78*x^6+81*x^5+34*x^4+54*x^3+22*x^2+72*x+40", "y^2=94*x^6+19*x^5+11*x^4+72*x^3+86*x^2+74*x+38"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 1, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.381952109.1"], "geometric_splitting_field": "4.0.381952109.1", "geometric_splitting_polynomials": [[4783, -305, 129, -1, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 96, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 96, "label": "2.113.az_nz", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.381952109.1"], "p": 113, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -25, 363, -2825, 12769], "poly_str": "1 -25 363 -2825 12769 ", "primitive_models": [], "q": 113, "real_poly": [1, -25, 137], "simple_distinct": ["2.113.az_nz"], "simple_factors": ["2.113.az_nzA"], "simple_multiplicities": [1], "singular_primes": [], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.381952109.1", "splitting_polynomials": [[4783, -305, 129, -1, 1]], "twist_count": 2, "twists": [["2.113.z_nz", "2.12769.dx_xtp", 2]], "weak_equivalence_count": 1, "zfv_index": 1, "zfv_index_factorization": [], "zfv_is_bass": true, "zfv_is_maximal": true, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 64421, "zfv_singular_count": 0, "zfv_singular_primes": []}