-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 10283, 'abvar_counts': [10283, 164353189, 2086465708691, 26588015109316661, 339457070599663966768, 4334523171055069207195981, 55347529305335674994187653507, 706732557109773930864056221281989, 9024267959487099910866527623133257859, 115230877626151689846357543470274463853824], 'abvar_counts_str': '10283 164353189 2086465708691 26588015109316661 339457070599663966768 4334523171055069207195981 55347529305335674994187653507 706732557109773930864056221281989 9024267959487099910866527623133257859 115230877626151689846357543470274463853824 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.207827179752231, 0.375379823670234], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 89, 'curve_counts': [89, 12871, 1446023, 163069275, 18424369794, 2081951786647, 235260564362843, 26584442095702419, 3004041936093090149, 339456738930117034686], 'curve_counts_str': '89 12871 1446023 163069275 18424369794 2081951786647 235260564362843 26584442095702419 3004041936093090149 339456738930117034686 ', 'curves': ['y^2=80*x^6+89*x^5+93*x^4+53*x^3+58*x^2+96*x+39', 'y^2=20*x^6+45*x^5+109*x^4+81*x^3+89*x^2+71*x+39', 'y^2=101*x^6+54*x^5+109*x^4+10*x^3+98*x^2+107*x+42', 'y^2=59*x^6+106*x^5+29*x^4+50*x^3+34*x^2+32*x+67', 'y^2=58*x^6+35*x^5+21*x^4+15*x^3+72*x^2+79*x+101', 'y^2=65*x^6+33*x^5+19*x^4+51*x^3+70*x^2+17*x+107', 'y^2=89*x^6+94*x^5+47*x^4+14*x^3+111*x^2+12*x+26', 'y^2=7*x^6+11*x^5+28*x^4+7*x^3+31*x^2+47*x+43', 'y^2=92*x^6+80*x^5+87*x^4+5*x^3+83*x^2+4*x+68', 'y^2=25*x^5+24*x^4+110*x^3+5*x^2+50*x+44', 'y^2=39*x^6+91*x^5+34*x^4+55*x^3+12*x^2+9*x+2', 'y^2=17*x^6+92*x^5+82*x^4+38*x^3+76*x^2+92*x+55', 'y^2=21*x^6+7*x^5+101*x^4+91*x^3+39*x^2+54*x+104', 'y^2=76*x^6+13*x^5+100*x^4+99*x^3+105*x^2+67*x+57', 'y^2=35*x^6+16*x^5+39*x^4+3*x^3+63*x^2+57*x+30', 'y^2=97*x^6+37*x^5+108*x^4+x^3+52*x^2+32*x', 'y^2=68*x^6+73*x^5+58*x^4+54*x^3+96*x^2+94*x+7', 'y^2=89*x^6+74*x^5+7*x^4+46*x^3+34*x^2+46*x+109', 'y^2=41*x^5+46*x^4+34*x^3+65*x^2+69*x+6', 'y^2=21*x^6+68*x^5+68*x^4+110*x^3+15*x^2+27*x+52', 'y^2=39*x^6+4*x^5+58*x^4+76*x^3+29*x^2+39*x+28', 'y^2=5*x^6+97*x^5+64*x^4+111*x^3+27*x^2+93*x+76', 'y^2=45*x^6+103*x^5+86*x^4+61*x^3+108*x^2+16*x+7', 'y^2=38*x^6+35*x^5+4*x^4+64*x^3+14*x^2+67*x+72', 'y^2=30*x^6+25*x^5+94*x^4+37*x^3+73*x^2+92*x+86', 'y^2=71*x^6+83*x^5+65*x^4+105*x^3+35*x^2+97*x+6', 'y^2=59*x^6+29*x^5+22*x^4+7*x^3+89*x^2+25*x+16', 'y^2=57*x^6+62*x^5+17*x^4+58*x^3+65*x^2+19*x+46', 'y^2=85*x^6+85*x^5+98*x^4+104*x^3+71*x^2+39*x+97', 'y^2=7*x^6+58*x^5+106*x^4+28*x^3+33*x+34', 'y^2=96*x^6+14*x^5+86*x^4+12*x^3+59*x^2+63*x+27', 'y^2=76*x^6+27*x^5+56*x^4+99*x^2+103*x+93', 'y^2=73*x^6+102*x^5+16*x^4+43*x^3+4*x^2+92*x+68', 'y^2=62*x^6+17*x^5+110*x^4+102*x^3+109*x^2+73*x+30', 'y^2=9*x^6+55*x^5+3*x^4+95*x^3+97*x^2+5*x+41', 'y^2=5*x^6+73*x^5+88*x^4+104*x^3+70*x^2+16*x+68', 'y^2=37*x^6+92*x^5+17*x^4+96*x^3+58*x^2+21*x+110', 'y^2=45*x^6+53*x^5+7*x^4+32*x^3+67*x^2+95*x+57', 'y^2=101*x^6+50*x^5+24*x^4+102*x^3+3*x^2+110*x+2', 'y^2=101*x^6+22*x^5+5*x^4+77*x^3+78*x^2+71*x+79', 'y^2=73*x^6+5*x^5+19*x^4+7*x^3+10*x^2+36*x+72', 'y^2=23*x^6+51*x^5+98*x^4+57*x^3+80*x^2+12*x+29', 'y^2=27*x^6+61*x^5+37*x^4+73*x^3+92*x^2+88*x+43', 'y^2=74*x^6+14*x^5+41*x^4+74*x^3+111*x^2+66*x+60', 'y^2=10*x^6+110*x^5+56*x^4+110*x^3+70*x^2+94*x+108', 'y^2=64*x^6+68*x^5+80*x^4+57*x^3+2*x^2+100*x+84', 'y^2=77*x^6+111*x^5+12*x^4+45*x^3+50*x^2+62*x+92', 'y^2=68*x^6+7*x^5+36*x^4+60*x^3+66*x^2+96*x+60', 'y^2=49*x^6+89*x^5+50*x^4+84*x^3+42*x^2+6*x+83', 'y^2=42*x^6+7*x^5+83*x^4+79*x^3+39*x^2+89*x+87', 'y^2=47*x^6+49*x^5+56*x^4+28*x^3+51*x^2+23*x+48', 'y^2=73*x^6+70*x^5+65*x^4+110*x^2+101*x+13', 'y^2=6*x^6+107*x^5+32*x^4+32*x^3+24*x^2+11*x+74', 'y^2=96*x^6+13*x^5+24*x^4+90*x^3+86*x^2+51*x+54', 'y^2=66*x^6+93*x^5+9*x^4+59*x^3+55*x^2+73*x+101', 'y^2=69*x^6+54*x^5+91*x^4+23*x^3+52*x^2+21*x+45', 'y^2=80*x^6+20*x^5+59*x^4+93*x^3+2*x^2+92*x+84', 'y^2=16*x^6+3*x^5+62*x^4+16*x^3+30*x^2+41*x+103', 'y^2=13*x^6+19*x^5+67*x^4+89*x^3+54*x^2+20*x+1', 'y^2=13*x^6+50*x^5+80*x^4+29*x^3+98*x^2+24*x+88', 'y^2=74*x^6+111*x^5+16*x^4+104*x^3+62*x^2+22*x+70', 'y^2=18*x^6+111*x^5+85*x^4+95*x^3+45*x^2+72*x+21', 'y^2=105*x^6+28*x^5+69*x^4+14*x^3+28*x^2+8*x+26', 'y^2=101*x^6+64*x^5+62*x^4+91*x^3+68*x^2+17*x+58', 'y^2=27*x^6+21*x^5+91*x^4+22*x^3+35*x^2+12*x+93', 'y^2=8*x^6+59*x^5+107*x^4+53*x^3+63*x^2+11*x+14', 'y^2=36*x^6+71*x^5+85*x^4+72*x^3+97*x^2+112*x+69', 'y^2=48*x^6+62*x^5+6*x^4+8*x^3+65*x^2+36*x+42', 'y^2=59*x^6+32*x^5+38*x^4+96*x^3+108*x^2+19*x+89', 'y^2=94*x^6+25*x^5+34*x^4+29*x^3+95*x^2+47*x+65', 'y^2=23*x^6+61*x^5+66*x^4+103*x^3+71*x^2+45*x+25', 'y^2=26*x^6+8*x^5+66*x^4+66*x^3+23*x^2+30*x+21', 'y^2=43*x^6+21*x^5+85*x^4+63*x^3+32*x^2+87*x+96', 'y^2=85*x^6+68*x^5+92*x^4+47*x^3+57*x^2+12*x+48', 'y^2=95*x^6+88*x^5+99*x^4+61*x^3+83*x^2+85*x+27', 'y^2=26*x^6+7*x^5+23*x^4+34*x^3+15*x^2+86*x+33', 'y^2=92*x^6+88*x^5+75*x^4+18*x^3+85*x^2+16*x+11', 'y^2=65*x^6+84*x^5+74*x^4+39*x^3+106*x^2+74*x+75', 'y^2=73*x^6+27*x^5+16*x^4+47*x^3+85*x^2+79*x+94', 'y^2=42*x^6+80*x^5+111*x^4+21*x^3+50*x^2+106*x+25', 'y^2=107*x^6+66*x^5+22*x^4+36*x^3+15*x^2+59*x+72', 'y^2=80*x^6+94*x^5+9*x^4+60*x^3+33*x^2+112*x+22', 'y^2=58*x^6+98*x^5+32*x^4+14*x^3+62*x^2+100*x+68', 'y^2=10*x^6+41*x^5+49*x^4+32*x^3+105*x^2+82*x+24', 'y^2=61*x^6+67*x^5+96*x^4+88*x^3+59*x^2+112*x+23', 'y^2=23*x^6+18*x^5+89*x^4+63*x^3+46*x^2+14*x+2', 'y^2=77*x^6+71*x^5+13*x^4+13*x^3+47*x^2+20*x+78', 'y^2=84*x^6+85*x^5+103*x^4+5*x^3+75*x^2+107*x+75', 'y^2=71*x^6+111*x^5+34*x^4+61*x^3+14*x^2+92*x+110', 'y^2=70*x^6+111*x^5+101*x^4+99*x^3+64*x^2+64*x+80', 'y^2=86*x^6+42*x^5+32*x^4+68*x^3+31*x^2+16*x+9', 'y^2=77*x^6+71*x^5+58*x^4+72*x^3+53*x^2+63*x+29', 'y^2=107*x^6+39*x^5+104*x^4+100*x^3+82*x^2+9*x+53', 'y^2=70*x^6+4*x^5+17*x^4+36*x^3+14*x^2+71*x+87', 'y^2=78*x^6+81*x^5+34*x^4+54*x^3+22*x^2+72*x+40', 'y^2=94*x^6+19*x^5+11*x^4+72*x^3+86*x^2+74*x+38'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 1, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.381952109.1'], 'geometric_splitting_field': '4.0.381952109.1', 'geometric_splitting_polynomials': [[4783, -305, 129, -1, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 96, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 96, 'label': '2.113.az_nz', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.381952109.1'], 'p': 113, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -25, 363, -2825, 12769], 'poly_str': '1 -25 363 -2825 12769 ', 'primitive_models': [], 'q': 113, 'real_poly': [1, -25, 137], 'simple_distinct': ['2.113.az_nz'], 'simple_factors': ['2.113.az_nzA'], 'simple_multiplicities': [1], 'singular_primes': [], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.381952109.1', 'splitting_polynomials': [[4783, -305, 129, -1, 1]], 'twist_count': 2, 'twists': [['2.113.z_nz', '2.12769.dx_xtp', 2]], 'weak_equivalence_count': 1, 'zfv_index': 1, 'zfv_index_factorization': [], 'zfv_is_bass': True, 'zfv_is_maximal': True, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 64421, 'zfv_singular_count': 0, 'zfv_singular_primes': []}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.113.az_nz', 'extension_degree': 1, 'extension_label': '2.113.az_nz', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.381952109.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.113.az_nz', 'galois_group': '4T3', 'places': [['95', '1', '0', '0'], ['5', '1', '0', '0'], ['1531/113', '519/113', '64/113', '7/113'], ['8876/113', '519/113', '64/113', '7/113']]}