Properties

Label 2.113.az_ne
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $1 - 25 x + 342 x^{2} - 2825 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.153225289375$, $\pm0.406497574994$
Angle rank:  $2$ (numerical)
Number field:  4.0.1040054204.1
Galois group:  $D_{4}$
Jacobians:  $52$
Isomorphism classes:  52

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10262$ $163802044$ $2084190567704$ $26584282870556096$ $339455474603529653782$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $89$ $12829$ $1444448$ $163046385$ $18424283169$ $2081953996498$ $235260605059793$ $26584442405638689$ $3004041937614762224$ $339456738952411328589$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 52 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113}$.

Endomorphism algebra over $\F_{113}$
The endomorphism algebra of this simple isogeny class is 4.0.1040054204.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.z_ne$2$(not in LMFDB)