Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 25 x + 342 x^{2} - 2825 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.153225289375$, $\pm0.406497574994$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1040054204.1 |
Galois group: | $D_{4}$ |
Jacobians: | $52$ |
Isomorphism classes: | 52 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10262$ | $163802044$ | $2084190567704$ | $26584282870556096$ | $339455474603529653782$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $89$ | $12829$ | $1444448$ | $163046385$ | $18424283169$ | $2081953996498$ | $235260605059793$ | $26584442405638689$ | $3004041937614762224$ | $339456738952411328589$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 52 curves (of which all are hyperelliptic):
- $y^2=47 x^6+74 x^5+34 x^4+95 x^3+53 x^2+46 x+22$
- $y^2=89 x^6+21 x^5+74 x^4+65 x^3+57 x^2+71 x+8$
- $y^2=3 x^6+56 x^5+101 x^4+94 x^3+101 x^2+60 x+68$
- $y^2=28 x^6+78 x^5+4 x^4+38 x^3+73 x^2+82 x+93$
- $y^2=102 x^6+14 x^5+49 x^4+105 x^3+9 x^2+112 x+106$
- $y^2=78 x^6+13 x^5+109 x^4+96 x^3+81 x^2+62 x+79$
- $y^2=21 x^6+83 x^5+110 x^4+71 x^3+26 x^2+44 x+45$
- $y^2=12 x^6+11 x^5+70 x^4+92 x^3+66 x^2+85 x+28$
- $y^2=57 x^6+54 x^5+38 x^4+43 x^3+66 x^2+66 x+20$
- $y^2=85 x^6+26 x^5+86 x^4+26 x^3+77 x^2+92 x+106$
- $y^2=3 x^6+12 x^5+108 x^4+34 x^3+12 x^2+52 x+59$
- $y^2=50 x^6+42 x^5+72 x^4+50 x^3+4 x^2+68$
- $y^2=110 x^6+28 x^5+22 x^4+63 x^3+61 x^2+14 x+67$
- $y^2=38 x^6+104 x^5+86 x^4+9 x^3+62 x^2+22 x+61$
- $y^2=13 x^6+45 x^5+8 x^4+36 x^3+87 x^2+25 x+23$
- $y^2=72 x^6+24 x^5+29 x^4+79 x^3+9 x^2+30 x+43$
- $y^2=107 x^6+13 x^5+105 x^4+83 x^3+40 x^2+29 x+26$
- $y^2=10 x^6+92 x^5+86 x^4+60 x^3+93 x^2+95 x+100$
- $y^2=110 x^6+x^5+26 x^4+91 x^3+17 x^2+21 x+53$
- $y^2=104 x^6+33 x^5+56 x^4+65 x^3+63 x^2+25 x+67$
- and 32 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.1040054204.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.z_ne | $2$ | (not in LMFDB) |