# Stored data for abelian variety isogeny class 2.113.az_ne, downloaded from the LMFDB on 07 October 2025. {"abvar_count": 10262, "abvar_counts": [10262, 163802044, 2084190567704, 26584282870556096, 339455474603529653782, 4334527771860869012636416, 55347538879723194530411016038, 706732565349256811077801332602624, 9024267964058266642010341475818290776, 115230877633719638151996310688778565526524], "abvar_counts_str": "10262 163802044 2084190567704 26584282870556096 339455474603529653782 4334527771860869012636416 55347538879723194530411016038 706732565349256811077801332602624 9024267964058266642010341475818290776 115230877633719638151996310688778565526524 ", "all_polarized_product": false, "all_unpolarized_product": false, "angle_corank": 0, "angle_rank": 2, "angles": [0.153225289374687, 0.406497574994399], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 89, "curve_counts": [89, 12829, 1444448, 163046385, 18424283169, 2081953996498, 235260605059793, 26584442405638689, 3004041937614762224, 339456738952411328589], "curve_counts_str": "89 12829 1444448 163046385 18424283169 2081953996498 235260605059793 26584442405638689 3004041937614762224 339456738952411328589 ", "curves": ["y^2=47*x^6+74*x^5+34*x^4+95*x^3+53*x^2+46*x+22", "y^2=89*x^6+21*x^5+74*x^4+65*x^3+57*x^2+71*x+8", "y^2=3*x^6+56*x^5+101*x^4+94*x^3+101*x^2+60*x+68", "y^2=28*x^6+78*x^5+4*x^4+38*x^3+73*x^2+82*x+93", "y^2=102*x^6+14*x^5+49*x^4+105*x^3+9*x^2+112*x+106", "y^2=78*x^6+13*x^5+109*x^4+96*x^3+81*x^2+62*x+79", "y^2=21*x^6+83*x^5+110*x^4+71*x^3+26*x^2+44*x+45", "y^2=12*x^6+11*x^5+70*x^4+92*x^3+66*x^2+85*x+28", "y^2=57*x^6+54*x^5+38*x^4+43*x^3+66*x^2+66*x+20", "y^2=85*x^6+26*x^5+86*x^4+26*x^3+77*x^2+92*x+106", "y^2=3*x^6+12*x^5+108*x^4+34*x^3+12*x^2+52*x+59", "y^2=50*x^6+42*x^5+72*x^4+50*x^3+4*x^2+68", "y^2=110*x^6+28*x^5+22*x^4+63*x^3+61*x^2+14*x+67", "y^2=38*x^6+104*x^5+86*x^4+9*x^3+62*x^2+22*x+61", "y^2=13*x^6+45*x^5+8*x^4+36*x^3+87*x^2+25*x+23", "y^2=72*x^6+24*x^5+29*x^4+79*x^3+9*x^2+30*x+43", "y^2=107*x^6+13*x^5+105*x^4+83*x^3+40*x^2+29*x+26", "y^2=10*x^6+92*x^5+86*x^4+60*x^3+93*x^2+95*x+100", "y^2=110*x^6+x^5+26*x^4+91*x^3+17*x^2+21*x+53", "y^2=104*x^6+33*x^5+56*x^4+65*x^3+63*x^2+25*x+67", "y^2=14*x^6+77*x^5+53*x^4+74*x^3+16*x^2+98*x+73", "y^2=6*x^6+109*x^5+48*x^4+44*x^3+54*x^2+36*x+43", "y^2=79*x^6+24*x^5+74*x^4+84*x^3+22*x^2+62*x+68", "y^2=78*x^6+20*x^5+73*x^4+67*x^3+18*x^2+32*x+34", "y^2=90*x^6+77*x^5+8*x^4+14*x^3+66*x^2+20*x+69", "y^2=67*x^6+41*x^5+46*x^4+23*x^3+68*x^2+18*x", "y^2=85*x^6+57*x^5+65*x^4+111*x^3+7*x^2+85*x+37", "y^2=65*x^6+97*x^5+26*x^4+74*x^3+40*x^2+75*x+60", "y^2=82*x^6+8*x^5+112*x^3+110*x^2+90*x+65", "y^2=95*x^6+57*x^5+79*x^4+71*x^3+38*x^2+106*x+72", "y^2=6*x^6+81*x^5+54*x^4+74*x^3+34*x+111", "y^2=23*x^6+93*x^5+10*x^3+34*x^2+46*x+16", "y^2=12*x^6+35*x^5+19*x^4+57*x^3+100*x^2+44*x+68", "y^2=19*x^6+72*x^5+100*x^4+52*x^3+16*x^2+47*x+74", "y^2=71*x^6+37*x^5+12*x^4+36*x^3+22*x^2+91*x+80", "y^2=51*x^6+71*x^5+94*x^4+57*x^3+108*x^2+96*x+31", "y^2=83*x^6+74*x^5+12*x^4+86*x^3+5*x^2+90*x+47", "y^2=84*x^6+10*x^5+40*x^4+75*x^3+30*x^2+23*x+34", "y^2=5*x^6+41*x^5+67*x^4+13*x^3+46*x^2+104*x+48", "y^2=91*x^6+27*x^5+103*x^4+107*x^3+44*x^2+92*x+88", "y^2=26*x^6+98*x^5+33*x^4+92*x^3+48*x^2+54*x+37", "y^2=82*x^6+37*x^5+81*x^4+13*x^3+58*x^2+69*x+31", "y^2=82*x^6+9*x^5+52*x^4+92*x^3+55*x^2+20*x+2", "y^2=5*x^6+11*x^5+57*x^4+105*x^3+89*x^2+62*x+89", "y^2=73*x^6+106*x^5+82*x^4+41*x^3+9*x^2+40*x+74", "y^2=73*x^6+10*x^5+59*x^4+85*x^3+29*x^2+107*x+109", "y^2=79*x^6+66*x^5+76*x^4+49*x^3+97*x^2+38*x+76", "y^2=93*x^6+89*x^5+49*x^4+4*x^3+24*x^2+78*x+51", "y^2=54*x^6+65*x^5+88*x^4+68*x^3+110*x^2+34*x+47", "y^2=33*x^6+36*x^5+x^4+87*x^3+11*x^2+21*x+17", "y^2=79*x^6+48*x^5+84*x^4+68*x^3+81*x^2+11*x+55", "y^2=46*x^6+23*x^5+93*x^4+99*x^3+66*x^2+62*x+108"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 1, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.1040054204.1"], "geometric_splitting_field": "4.0.1040054204.1", "geometric_splitting_polynomials": [[4027, -557, 108, -1, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 52, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 52, "label": "2.113.az_ne", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.1040054204.1"], "p": 113, "p_rank": 2, "p_rank_deficit": 0, "pic_prime_gens": [[1, 2, 1, 2], [1, 7, 1, 2], [1, 19, 1, 26]], "poly": [1, -25, 342, -2825, 12769], "poly_str": "1 -25 342 -2825 12769 ", "primitive_models": [], "principal_polarization_count": 52, "q": 113, "real_poly": [1, -25, 116], "simple_distinct": ["2.113.az_ne"], "simple_factors": ["2.113.az_neA"], "simple_multiplicities": [1], "singular_primes": [], "size": 52, "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.1040054204.1", "splitting_polynomials": [[4027, -557, 108, -1, 1]], "twist_count": 2, "twists": [["2.113.z_ne", "2.12769.ch_bwe", 2]], "weak_equivalence_count": 1, "zfv_index": 1, "zfv_index_factorization": [], "zfv_is_bass": true, "zfv_is_maximal": true, "zfv_pic_size": 52, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 40124, "zfv_singular_count": 0, "zfv_singular_primes": []}