-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 10262, 'abvar_counts': [10262, 163802044, 2084190567704, 26584282870556096, 339455474603529653782, 4334527771860869012636416, 55347538879723194530411016038, 706732565349256811077801332602624, 9024267964058266642010341475818290776, 115230877633719638151996310688778565526524], 'abvar_counts_str': '10262 163802044 2084190567704 26584282870556096 339455474603529653782 4334527771860869012636416 55347538879723194530411016038 706732565349256811077801332602624 9024267964058266642010341475818290776 115230877633719638151996310688778565526524 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.153225289374687, 0.406497574994399], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 89, 'curve_counts': [89, 12829, 1444448, 163046385, 18424283169, 2081953996498, 235260605059793, 26584442405638689, 3004041937614762224, 339456738952411328589], 'curve_counts_str': '89 12829 1444448 163046385 18424283169 2081953996498 235260605059793 26584442405638689 3004041937614762224 339456738952411328589 ', 'curves': ['y^2=47*x^6+74*x^5+34*x^4+95*x^3+53*x^2+46*x+22', 'y^2=89*x^6+21*x^5+74*x^4+65*x^3+57*x^2+71*x+8', 'y^2=3*x^6+56*x^5+101*x^4+94*x^3+101*x^2+60*x+68', 'y^2=28*x^6+78*x^5+4*x^4+38*x^3+73*x^2+82*x+93', 'y^2=102*x^6+14*x^5+49*x^4+105*x^3+9*x^2+112*x+106', 'y^2=78*x^6+13*x^5+109*x^4+96*x^3+81*x^2+62*x+79', 'y^2=21*x^6+83*x^5+110*x^4+71*x^3+26*x^2+44*x+45', 'y^2=12*x^6+11*x^5+70*x^4+92*x^3+66*x^2+85*x+28', 'y^2=57*x^6+54*x^5+38*x^4+43*x^3+66*x^2+66*x+20', 'y^2=85*x^6+26*x^5+86*x^4+26*x^3+77*x^2+92*x+106', 'y^2=3*x^6+12*x^5+108*x^4+34*x^3+12*x^2+52*x+59', 'y^2=50*x^6+42*x^5+72*x^4+50*x^3+4*x^2+68', 'y^2=110*x^6+28*x^5+22*x^4+63*x^3+61*x^2+14*x+67', 'y^2=38*x^6+104*x^5+86*x^4+9*x^3+62*x^2+22*x+61', 'y^2=13*x^6+45*x^5+8*x^4+36*x^3+87*x^2+25*x+23', 'y^2=72*x^6+24*x^5+29*x^4+79*x^3+9*x^2+30*x+43', 'y^2=107*x^6+13*x^5+105*x^4+83*x^3+40*x^2+29*x+26', 'y^2=10*x^6+92*x^5+86*x^4+60*x^3+93*x^2+95*x+100', 'y^2=110*x^6+x^5+26*x^4+91*x^3+17*x^2+21*x+53', 'y^2=104*x^6+33*x^5+56*x^4+65*x^3+63*x^2+25*x+67', 'y^2=14*x^6+77*x^5+53*x^4+74*x^3+16*x^2+98*x+73', 'y^2=6*x^6+109*x^5+48*x^4+44*x^3+54*x^2+36*x+43', 'y^2=79*x^6+24*x^5+74*x^4+84*x^3+22*x^2+62*x+68', 'y^2=78*x^6+20*x^5+73*x^4+67*x^3+18*x^2+32*x+34', 'y^2=90*x^6+77*x^5+8*x^4+14*x^3+66*x^2+20*x+69', 'y^2=67*x^6+41*x^5+46*x^4+23*x^3+68*x^2+18*x', 'y^2=85*x^6+57*x^5+65*x^4+111*x^3+7*x^2+85*x+37', 'y^2=65*x^6+97*x^5+26*x^4+74*x^3+40*x^2+75*x+60', 'y^2=82*x^6+8*x^5+112*x^3+110*x^2+90*x+65', 'y^2=95*x^6+57*x^5+79*x^4+71*x^3+38*x^2+106*x+72', 'y^2=6*x^6+81*x^5+54*x^4+74*x^3+34*x+111', 'y^2=23*x^6+93*x^5+10*x^3+34*x^2+46*x+16', 'y^2=12*x^6+35*x^5+19*x^4+57*x^3+100*x^2+44*x+68', 'y^2=19*x^6+72*x^5+100*x^4+52*x^3+16*x^2+47*x+74', 'y^2=71*x^6+37*x^5+12*x^4+36*x^3+22*x^2+91*x+80', 'y^2=51*x^6+71*x^5+94*x^4+57*x^3+108*x^2+96*x+31', 'y^2=83*x^6+74*x^5+12*x^4+86*x^3+5*x^2+90*x+47', 'y^2=84*x^6+10*x^5+40*x^4+75*x^3+30*x^2+23*x+34', 'y^2=5*x^6+41*x^5+67*x^4+13*x^3+46*x^2+104*x+48', 'y^2=91*x^6+27*x^5+103*x^4+107*x^3+44*x^2+92*x+88', 'y^2=26*x^6+98*x^5+33*x^4+92*x^3+48*x^2+54*x+37', 'y^2=82*x^6+37*x^5+81*x^4+13*x^3+58*x^2+69*x+31', 'y^2=82*x^6+9*x^5+52*x^4+92*x^3+55*x^2+20*x+2', 'y^2=5*x^6+11*x^5+57*x^4+105*x^3+89*x^2+62*x+89', 'y^2=73*x^6+106*x^5+82*x^4+41*x^3+9*x^2+40*x+74', 'y^2=73*x^6+10*x^5+59*x^4+85*x^3+29*x^2+107*x+109', 'y^2=79*x^6+66*x^5+76*x^4+49*x^3+97*x^2+38*x+76', 'y^2=93*x^6+89*x^5+49*x^4+4*x^3+24*x^2+78*x+51', 'y^2=54*x^6+65*x^5+88*x^4+68*x^3+110*x^2+34*x+47', 'y^2=33*x^6+36*x^5+x^4+87*x^3+11*x^2+21*x+17', 'y^2=79*x^6+48*x^5+84*x^4+68*x^3+81*x^2+11*x+55', 'y^2=46*x^6+23*x^5+93*x^4+99*x^3+66*x^2+62*x+108'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 1, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.1040054204.1'], 'geometric_splitting_field': '4.0.1040054204.1', 'geometric_splitting_polynomials': [[4027, -557, 108, -1, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 52, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 52, 'label': '2.113.az_ne', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.1040054204.1'], 'p': 113, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 2, 1, 2], [1, 7, 1, 2], [1, 19, 1, 26]], 'poly': [1, -25, 342, -2825, 12769], 'poly_str': '1 -25 342 -2825 12769 ', 'primitive_models': [], 'principal_polarization_count': 52, 'q': 113, 'real_poly': [1, -25, 116], 'simple_distinct': ['2.113.az_ne'], 'simple_factors': ['2.113.az_neA'], 'simple_multiplicities': [1], 'singular_primes': [], 'size': 52, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.1040054204.1', 'splitting_polynomials': [[4027, -557, 108, -1, 1]], 'twist_count': 2, 'twists': [['2.113.z_ne', '2.12769.ch_bwe', 2]], 'weak_equivalence_count': 1, 'zfv_index': 1, 'zfv_index_factorization': [], 'zfv_is_bass': True, 'zfv_is_maximal': True, 'zfv_pic_size': 52, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 40124, 'zfv_singular_count': 0, 'zfv_singular_primes': []}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.113.az_ne', 'extension_degree': 1, 'extension_label': '2.113.az_ne', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.1040054204.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.113.az_ne', 'galois_group': '4T3', 'places': [['11312/113', '150/113', '12762/113', '1/113'], ['6', '1', '0', '0']]}